• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHENG Xu, LIU Song-yu, CAI Guang-hua, CAO Jing-jing. Experimental study on drying-wetting properties of carbonated reactive MgO-stabilized soils[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(2): 297-304. DOI: 10.11779/CJGE201602013
Citation: ZHENG Xu, LIU Song-yu, CAI Guang-hua, CAO Jing-jing. Experimental study on drying-wetting properties of carbonated reactive MgO-stabilized soils[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(2): 297-304. DOI: 10.11779/CJGE201602013

Experimental study on drying-wetting properties of carbonated reactive MgO-stabilized soils

More Information
  • Received Date: December 25, 2014
  • Published Date: February 24, 2016
  • The carbonated curing technology is an innovative ground improvement method, in which the reactive magnesia (MgO) is firstly mixed with the soft soils and then carbon dioxide is injected for carbonation in short time. Laboratory tests are performed to investigate the physical and mechanical properties of carbonated reactive MgO-stabilized soils under drying-wetting cycles. The test results are compared with those of cemented soils. It is shown that the maximum unconfined compressive strength of MgO-stabilized silts can reach 5 MPa after 3 hours carbonation, and that of MgO-stabilized silty clay can only reach 2.6 MPa after 24 hours carbonation. The dry density of carbonated MgO-stabilized soils decreases after drying-wetting cycles, while that of cemented soils has significant variation. Silt samples have better performance after drying-wetting cycles, and the maximum unconfined compressive strength of carbonated silt samples is still able to reach 4 MPa after 6 drying-wetting cycles which is twice that of cemented silts. However, the residual compressive strength of the carbonated silty clay is only 35% after 6 cycles, and it is consistently about 65% for the cemented silty clay, therefore the resistance to drying-wetting cyclic performance is worse than that of silt samples, and the resistance to drying-wetting cyclic performance of carbonated silty clay is worse than cemented silty clay. XRD, SEM and MIP tests reveal that the cumulative volume of pore void of carbonated silt is essentially constant. Thus the carbonated silt samples can still show relatively high strength in the unconfined compressive tests. Whereas, the void ratio of carbonated silty clay increases after cyclic drying-wetting tests and further reduces the density, which is responsible for the significant strength reduction.
  • [1]
    刘松玉, 钱国超, 章定文. 粉喷桩复合地基理论与工程应用[M]. 北京: 中国建筑工业出版社, 2006: 18-21. (LIU Song-yu, QIAN Guo-chao, ZHANG Ding-wen. The principle and application of dry jet mixing composite foundation[M]. Beijing: China Architecture and Building Press, 2006: 18-21. (in Chinese))
    [2]
    王定才. 粉磨-搅拌一体化:中国商品混凝土产业的发展策略[J]. 混凝土, 2003(2): 20-23. (WANG Ding-cai. Grinding-stirring integration: The development strategy of China's commercial concrete industry[J]. Concrete, 2003(2): 20-23. (in Chinese))
    [3]
    寇 新, 李金峰. 煤炭是我国能源节约的重点[J]. 煤炭经济研究, 2004(8): 12-13. (KOU Xin, LI Jin-fen. Coal is the focus of China's energy conservation[J]. Coal Economic Research, 2004(8): 12-13. (in Chinese))
    [4]
    李涛平. 中国水泥工业能效现状和节能潜力报告[J]. 水泥工程, 2004(4): 1-10. (LI Tao-ping. China's cement industry energy efficiency and energy saving potential Situation Report[J]. Cement Engineering, 2004(4): 1-10. (in Chinese))
    [5]
    Intergovernmental Panel on Climate Change. Sources of CO2 [C]// IPCC Special Report on Carbon Dioxide Capture and Storage, IPCC. Switzerland, 2004: 77-103.
    [6]
    World Business Council for Sustainable Development. The Cement Sustainability Initiative-Our Agenda for Action[C]// WBCSD, Conches-Geneva. Switzerland, 2002.
    [7]
    YI Y L, LISKA M, UNLUER C, et al. Carbonating magnesia for soil stabilisation[J]. Canadian Geotechnical Journal, 2013, 50: 899-905.
    [8]
    CAI G H, LIU S Y, DU Y J, et al. Strength and deformation characteristics of carbonated reactive magnesia treated silt soil[J]. Journal of Central South University, 2015, 22(5): 1859-1868.
    [9]
    CAI G H, DU Y J, LIU S Y, et al. Physical properties, electrical resistivity and strength characteristics of carbonated silty soil admixed with reactive magnesia[J]. Canadian Geotechnical Journal, 2015: 52(11): 1699-1713.
    [10]
    易耀林, MARTIN Liska, ABIR Al-Tabbaa, 等. 一种土壤的碳化固化方法及其装置[P]. 中国, 201010604013.1, 2010. (YI Yao-lin, LISKA M, AL-TABBAA A, et al. A kind of soil carbonation curing method and device: China, 201010604013.1[P]. 2010. (in Chinese))
    [11]
    易耀林, Martin Liska, Abir Al-Tabbaa, 等. 一种用于土体固化的绿色低碳固化剂[P]. 中国发明专利, 201010604325.2, 2010. (YI Yao-lin, LISKA M, AL-TABBAA A, et al. A kind of low-carbon curing agent used for soil stabilization: China, 201010604325.2[P]. 2010. (in Chinese))
    [12]
    易耀林. 基于可持续发展的搅拌桩新技术与理论[D]. 南京: 东南大学, 2013. (YI Yao-lin. Sustainable novel deep mixing methods and theory[D]. Nanjing: Southeast University, 2013. (in Chinese))
    [13]
    李 晨. 氧化镁活性对碳化搅拌桩加固效果影响研究[D].南京: 东南大学, 2014. (LI Chen. Influence of MgO activity on the stabilization efficiency of carbonated mixing method[D]. Nanjing: Southeast University, 2014. (in Chinese))
    [14]
    American Society for Testing and Materials (ASTM). Standard test method for wetting and drying test of solid wastes[S]. US: ASTM International, 2009
    [15]
    ESTABRAGH A R, PERESHKAFTIB M R S, PARSAEIC B, et al. Stabilised expansive soil behavior during wetting and drying[J]. International Journal of Pavement Engineering, 2013, 14(4): 418-427.
    [16]
    AHMED A, UGAI K. Environmental effects on durability of soil stabilized with recycled gypsum[J]. Cold Regions Science and Technology, 2011, 66: 84-92.
    [17]
    UNLUER C, Al-Tabbaa A. Enhancing the carbonation of MgO cement porous blocks through improved curing conditions[J]. Cement and Concrete Research, 2014(59): 55-65.
  • Related Articles

    [1]GONG Jian-qing, PENG Wen-zhe. Three-dimensional finite element analysis of stress and deformation characteristics of energy piles under inclined loads[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(11): 2105-2111. DOI: 10.11779/CJGE202111017
    [2]HAN Lei, YE Guan-lin, WANG Jian-hua, YANG Guang-hui, ZHOU Song. Finite element analysis of impact of under-crossing of large shallow shield tunnel on riverbank[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(zk1): 125-128. DOI: 10.11779/CJGE2015S1025
    [3]DU Chuang, DING Hong-yan, ZHANG Pu-yang, LI Jing. Analysis of steel sheet pile cofferdam using finite element method[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(zk2): 159-164. DOI: 10.11779/CJGE2014S2027
    [4]CAI Feng, HE Li-jun, ZHOU Xiao-peng, XU Mei-juan, MEI Guo-xiong. Finite element analysis of one-dimensional consolidation of undrained symmetry plane under continuous drainage boundary[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(11): 2141-2147.
    [5]SUN Hai-zhong. Application of finite element numerical analysis in excavation design[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(suppl): 129-133.
    [6]HAN Jin-bao, XIONG Ju-hua, SUN Qing, YANG Min. Multi-factor three-dimensional finite element analysis of effects of tunnel construction on adjacent pile foundation[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(sup2): 339-344.
    [7]XU Wen-qiang, YUAN Fan-fan, WEI Chang-fu, YANG Cao-shuai. Bearing capacity of suction tapered bucket foundations based on three-dimensional finite element numerical analysis[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(zk1): 485-490.
    [8]HAN Bing, CAO Pinlu. Finite element analysis of interaction between soils and impact sampling bits[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(10): 1560-1563.
    [9]ZHENG Hong, C. F. Lee, L. G. Tham, Ge Xiurun. Displacement-controlled method in finite element analysis and its applications[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(1): 81-85.
    [10]Yu Zehong, Zhang Qisen. Finite Element Analysis for Mechanism of Geonets-Soil Interaction[J]. Chinese Journal of Geotechnical Engineering, 1997, 19(3): 79-85.
  • Cited by

    Periodical cited type(22)

    1. 黄飞虎,裴彦飞,苏谦,王鑫,杨鸿麟,李艳东. 螺旋钢桩加固边坡抗滑承载特性研究. 铁道科学与工程学报. 2024(02): 578-590 .
    2. 李绪勇,杨忠平,刘纲,李勇华,张益铭. 隔离式螺旋桩抗压承载与抗地基冻融特性. 岩土工程学报. 2024(06): 1187-1196 . 本站查看
    3. 车松阳,裴碧莹,徐洪俊. 螺旋桩室内模型试验设计及结果分析. 科技创新与应用. 2024(17): 68-71 .
    4. 周亚龙,王旭,蒋代军,刘德仁,何菲,晏昌,牛富俊. 青藏铁路接触网异型桩基抗冻拔模型试验研究. 西南交通大学学报. 2024(03): 677-684 .
    5. 孙铁成,杨逸,杨茜,董创奇. 开敞系统中冻土-混凝土界面抗拉强度试验研究. 石家庄铁道大学学报(自然科学版). 2024(02): 92-98 .
    6. 郝冬雪,王磊,陈榕,莫凯强,孔纲强,高宇聪. 冻融循环下粉砂中螺旋锚抗拔稳定模型试验研究. 岩土工程学报. 2023(01): 57-65 . 本站查看
    7. 陈强,李驰,高利平. 基于图像处理技术水分迁移对光伏桩冻拔稳定性影响的试验研究. 太阳能学报. 2023(01): 49-54 .
    8. 田天伦,苏安双,贾青,王淼. 光伏螺旋桩基抗冻拔数值模拟. 水利科学与寒区工程. 2023(03): 1-6 .
    9. 吴炅,陈鹏飞,尹啸笛,郝洪策,梁成军. 桩体结构参数对螺旋桩-土冻胀性能的影响. 河南科学. 2023(07): 964-969 .
    10. 张学礼,崔强,张树林. 冻土地基中锥管板条装配式基础抗拔承载性能试验研究. 地质科技通报. 2022(02): 335-342 .
    11. 熊维林,葛洪林,富海鹰. 考虑非对称冻结的塔杆基础模型实验研究. 铁道科学与工程学报. 2022(04): 931-940 .
    12. 王卫东,崔强,韩杨春,张树林,孟宪乔. 高寒地区输电线路锥管板条装配式基础抗冻拔性能试验研究. 防灾减灾工程学报. 2022(03): 542-552 .
    13. 王超哲,吴进,王立兴,刘浩,杨紫健,吴文兵. 黏弹性地基中螺旋桩水平动力特性. 中南大学学报(自然科学版). 2022(06): 2279-2289 .
    14. 杨朝旭,任刚,殷卫永,韩战涛,任文博,李佳佳. 钢管螺旋桩防护公路膨胀土高边坡工程应用. 公路. 2022(07): 41-48 .
    15. 陈明伟,陈航杰. 桩型对冻土桩基冻胀特性的影响研究. 甘肃科技. 2022(09): 8-12 .
    16. 黄旭斌,盛煜,黄龙,彭尔兴,曹伟,张玺彦,何彬彬. 单向冻结条件下扩底桩抗冻拔能力试验研究. 工程科学与技术. 2021(01): 122-131 .
    17. 屈讼昭,郭咏华,王仪,张斌,张建明,孙清. 大锚片螺旋锚在粉质黏土中的下压承载性能. 土木与环境工程学报(中英文). 2021(05): 34-44 .
    18. 高晓静,孙铁成,李晓康,廖一鸣. 冻结作用下粉土-混凝土接触面抗拉强度试验研究. 冰川冻土. 2020(02): 499-507 .
    19. 黄旭斌,盛煜,黄龙,何彬彬,张玺彦. 季节冻土区扩底单桩受力性能研究进展与展望. 冰川冻土. 2020(04): 1220-1228 .
    20. 王希云,邵康,苏谦,刘凯文,邹婷. 单叶片螺旋钢桩竖向承载特性数值分析. 铁道标准设计. 2019(07): 66-71 .
    21. 王希云. 螺旋钢桩设计参数对抗压承载性能的影响研究. 路基工程. 2019(03): 57-61 .
    22. 邵康,苏谦,刘凯文,李婷,周珩. 竖向受压下考虑安装扰动螺旋钢桩数值模拟分析与现场载荷试验. 岩石力学与工程学报. 2019(12): 2570-2581 .

    Other cited types(21)

Catalog

    Article views (359) PDF downloads (426) Cited by(43)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return