• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
XU You-jun, WEN Zhong-kun, YAN Lü-shun, BAI Xue-guang, LIU Xin-mei. Experimental study on soil improvement during construction of EPB rectangular pipe jacking with multi-cutter[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(2): 288-296. DOI: 10.11779/CJGE201602012
Citation: XU You-jun, WEN Zhong-kun, YAN Lü-shun, BAI Xue-guang, LIU Xin-mei. Experimental study on soil improvement during construction of EPB rectangular pipe jacking with multi-cutter[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(2): 288-296. DOI: 10.11779/CJGE201602012

Experimental study on soil improvement during construction of EPB rectangular pipe jacking with multi-cutter

More Information
  • Received Date: December 02, 2014
  • Published Date: February 24, 2016
  • The rectangular pipe jacking method is applied in the underground passage project situated in the Inner Mongolia University of Science and Technology under the condition of sandy stratum. The soil improvement effects are unsatisfactory by using the methods of adding water and the two materials of PAM solution and silt mud. The cutter head is seriously blocked, and the actual jacking speed is only 1.5 mm/min. Therefore, such methods as monitoring measurements and laboratory tests are used to optimize the old soil improvement plan. The research results are as follows: Firstly, the best concentration of PAM water solution is 2 g/L, and the better mass concentration of bentonite mud is 9%; Secondly, the best proportion of additive is that the injection ratio of slurry is 12% and that of PAM water solution is 17%; Thirdly, the jacking speed increases to 2.8 mm/min by using the optimized soil improvement plan, and at the same time, the ground settlement value does not exceed the control standard. The proposed soil improvement method can meet the requirements of rectangular pipe jacking construction.
  • [1]
    魏 纲, 魏新江, 徐日庆. 顶管工程技术[M]. 北京: 化学工业出版社, 2011. (WEI Gang, WEI Xin-jiang, XU Ri-qing. Pipe jacking engineering technique[M]. Beijing: Chemical Industry Press, 2011. (in Chinese))
    [2]
    宋克志, 汪 波, 孔 恒, 等. 无水砂卵石地层土压盾构施工泡沫技术研究[J]. 岩石力学与工程学报, 2005, 24(13): 2327-2332. (SONG Ke-zhi, WANG Bo, KONG Heng, et al. Study on foam technology during shield excavation in sandy cobble bed without water[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(13): 2327-2332. (in Chinese))
    [3]
    汪国峰. 北京地铁十号线土压平衡盾构土体改良技术应用研究[J]. 现代隧道技术, 2009, 46(4): 77-82. (WANG Guo-feng. Soil improvement technologies and implementation for EPB shield in Beijing subway line 10[J]. Modern Tunnelling Technology, 2009, 46(4): 77-82. (in Chinese))
    [4]
    朱 伟. 隧道标准规范(盾构篇)及解说[M]. 北京: 中国建筑工业出版社, 2001. (ZHU Wei. Japanese standard for shield tunneling[M]. Beijing: China Architecture & Building Press, 2001. (in Chinese))
    [5]
    张国京, 刘 盈. 土压平衡盾构施工中土的塑流、化技术[J]. 市政技术, 2005, 23(5): 293-296. (ZHANG Guo-jing, LIU Ying. Soil plasticizing technique for epb shield excavation[J]. Municipal Engineering Technology, 2005, 23(5): 293-296. (in Chinese))
    [6]
    BARTAK J, HRDINA I, ROMANCOV G, et al. Integral studies on mechanical functions of mudding agents and the properties of modified soils in the EPB shield tunneling technology[C]// Underground Space——the 4th Dimension on Metropolises, Prague, Taylor & Francis Group. London, 2007: 1153-1159.
    [7]
    魏康林. 土压平衡盾构施工中泡沫和膨润土改良土体的微观机理分析[J]. 现代隧道技术, 2007, 44(1): 73-77. (WEI Kang-lin. Micro-mechanism analysis for the soil improvement by foam and bentonite in EPB shield tunnelling[J]. Modern Tunnelling Technology, 2007, 44(1): 73-77. (in Chinese))
    [8]
    胡晓波, 吕智英, 曾 涛. PAS与增稠保水剂复掺对水泥净浆性能的影响[J]. 铁道科学与工程学报, 2006, 3(1): 60-64. (HU Xiao-bo, LÜ Zhi-ying, ZENG Tao. Influence of the compound of aminosufonic acid-based super plasticzer and water-retentive and thickening admixtures on cement paste properties[J]. Journal of Railway Science and Engineering, 2006, 3(1): 60-64. (in Chinese))
    [9]
    王春婷, 隆 威. 大口径长距离顶管工程泥浆配方试验研究[J]. 铁道科学与工程学报, 2014, 11(1): 106-111. (WANG Chun-ting, LONG Wei. Experimental study on the slurry formulation used for the large diameter long distance pipe_jacking project[J]. Journal of Railway Science and Engineering, 2014, 11(1): 106-111. (in Chinese))
    [10]
    纪 鹏. 超长管道顶管用润滑减阻护壁泥浆系统的研究[D]. 长沙: 中南大学, 2010. (JI Peng. Study on the lubricating and resistance-reducing wall-protecting slurry system usd for ultra-long pipe jacking[D]. Changsha: Central South University, 2010. (in Chinese))
    [11]
    姜厚停, 龚秋明, 杜修力. 卵石地层土压平衡盾构施工土体改良试验研究[J]. 岩土工程学报, 2013, 35(2): 284-291. (JIANG Hong-ting, GONG Qiu-ming, DU Xiu-li. Experimental study on soil conditioning in cobble layer by use of earth pressure balanced machine[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(2): 284-291. (in Chinese))
    [12]
    MIGUEL P. Soil conditioning for sand[J]. Tunnels and Tunnelling International, 2003(7): 40-42.
    [13]
    RAFFAELE V, CKAUDIO O I, DANIELE P. Soil conditioning of sand for EPB applications: a laboratory research[J]. Tunneling and Underground Space Technology, 2008, 23(3): 308-31.
  • Related Articles

    [1]GONG Jian-qing, PENG Wen-zhe. Three-dimensional finite element analysis of stress and deformation characteristics of energy piles under inclined loads[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(11): 2105-2111. DOI: 10.11779/CJGE202111017
    [2]HAN Lei, YE Guan-lin, WANG Jian-hua, YANG Guang-hui, ZHOU Song. Finite element analysis of impact of under-crossing of large shallow shield tunnel on riverbank[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(zk1): 125-128. DOI: 10.11779/CJGE2015S1025
    [3]DU Chuang, DING Hong-yan, ZHANG Pu-yang, LI Jing. Analysis of steel sheet pile cofferdam using finite element method[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(zk2): 159-164. DOI: 10.11779/CJGE2014S2027
    [4]CAI Feng, HE Li-jun, ZHOU Xiao-peng, XU Mei-juan, MEI Guo-xiong. Finite element analysis of one-dimensional consolidation of undrained symmetry plane under continuous drainage boundary[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(11): 2141-2147.
    [5]SUN Hai-zhong. Application of finite element numerical analysis in excavation design[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(suppl): 129-133.
    [6]HAN Jin-bao, XIONG Ju-hua, SUN Qing, YANG Min. Multi-factor three-dimensional finite element analysis of effects of tunnel construction on adjacent pile foundation[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(sup2): 339-344.
    [7]XU Wen-qiang, YUAN Fan-fan, WEI Chang-fu, YANG Cao-shuai. Bearing capacity of suction tapered bucket foundations based on three-dimensional finite element numerical analysis[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(zk1): 485-490.
    [8]HAN Bing, CAO Pinlu. Finite element analysis of interaction between soils and impact sampling bits[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(10): 1560-1563.
    [9]ZHENG Hong, C. F. Lee, L. G. Tham, Ge Xiurun. Displacement-controlled method in finite element analysis and its applications[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(1): 81-85.
    [10]Yu Zehong, Zhang Qisen. Finite Element Analysis for Mechanism of Geonets-Soil Interaction[J]. Chinese Journal of Geotechnical Engineering, 1997, 19(3): 79-85.
  • Cited by

    Periodical cited type(22)

    1. 黄飞虎,裴彦飞,苏谦,王鑫,杨鸿麟,李艳东. 螺旋钢桩加固边坡抗滑承载特性研究. 铁道科学与工程学报. 2024(02): 578-590 .
    2. 李绪勇,杨忠平,刘纲,李勇华,张益铭. 隔离式螺旋桩抗压承载与抗地基冻融特性. 岩土工程学报. 2024(06): 1187-1196 . 本站查看
    3. 车松阳,裴碧莹,徐洪俊. 螺旋桩室内模型试验设计及结果分析. 科技创新与应用. 2024(17): 68-71 .
    4. 周亚龙,王旭,蒋代军,刘德仁,何菲,晏昌,牛富俊. 青藏铁路接触网异型桩基抗冻拔模型试验研究. 西南交通大学学报. 2024(03): 677-684 .
    5. 孙铁成,杨逸,杨茜,董创奇. 开敞系统中冻土-混凝土界面抗拉强度试验研究. 石家庄铁道大学学报(自然科学版). 2024(02): 92-98 .
    6. 郝冬雪,王磊,陈榕,莫凯强,孔纲强,高宇聪. 冻融循环下粉砂中螺旋锚抗拔稳定模型试验研究. 岩土工程学报. 2023(01): 57-65 . 本站查看
    7. 陈强,李驰,高利平. 基于图像处理技术水分迁移对光伏桩冻拔稳定性影响的试验研究. 太阳能学报. 2023(01): 49-54 .
    8. 田天伦,苏安双,贾青,王淼. 光伏螺旋桩基抗冻拔数值模拟. 水利科学与寒区工程. 2023(03): 1-6 .
    9. 吴炅,陈鹏飞,尹啸笛,郝洪策,梁成军. 桩体结构参数对螺旋桩-土冻胀性能的影响. 河南科学. 2023(07): 964-969 .
    10. 张学礼,崔强,张树林. 冻土地基中锥管板条装配式基础抗拔承载性能试验研究. 地质科技通报. 2022(02): 335-342 .
    11. 熊维林,葛洪林,富海鹰. 考虑非对称冻结的塔杆基础模型实验研究. 铁道科学与工程学报. 2022(04): 931-940 .
    12. 王卫东,崔强,韩杨春,张树林,孟宪乔. 高寒地区输电线路锥管板条装配式基础抗冻拔性能试验研究. 防灾减灾工程学报. 2022(03): 542-552 .
    13. 王超哲,吴进,王立兴,刘浩,杨紫健,吴文兵. 黏弹性地基中螺旋桩水平动力特性. 中南大学学报(自然科学版). 2022(06): 2279-2289 .
    14. 杨朝旭,任刚,殷卫永,韩战涛,任文博,李佳佳. 钢管螺旋桩防护公路膨胀土高边坡工程应用. 公路. 2022(07): 41-48 .
    15. 陈明伟,陈航杰. 桩型对冻土桩基冻胀特性的影响研究. 甘肃科技. 2022(09): 8-12 .
    16. 黄旭斌,盛煜,黄龙,彭尔兴,曹伟,张玺彦,何彬彬. 单向冻结条件下扩底桩抗冻拔能力试验研究. 工程科学与技术. 2021(01): 122-131 .
    17. 屈讼昭,郭咏华,王仪,张斌,张建明,孙清. 大锚片螺旋锚在粉质黏土中的下压承载性能. 土木与环境工程学报(中英文). 2021(05): 34-44 .
    18. 高晓静,孙铁成,李晓康,廖一鸣. 冻结作用下粉土-混凝土接触面抗拉强度试验研究. 冰川冻土. 2020(02): 499-507 .
    19. 黄旭斌,盛煜,黄龙,何彬彬,张玺彦. 季节冻土区扩底单桩受力性能研究进展与展望. 冰川冻土. 2020(04): 1220-1228 .
    20. 王希云,邵康,苏谦,刘凯文,邹婷. 单叶片螺旋钢桩竖向承载特性数值分析. 铁道标准设计. 2019(07): 66-71 .
    21. 王希云. 螺旋钢桩设计参数对抗压承载性能的影响研究. 路基工程. 2019(03): 57-61 .
    22. 邵康,苏谦,刘凯文,李婷,周珩. 竖向受压下考虑安装扰动螺旋钢桩数值模拟分析与现场载荷试验. 岩石力学与工程学报. 2019(12): 2570-2581 .

    Other cited types(21)

Catalog

    Article views (342) PDF downloads (365) Cited by(43)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return