• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
CAO Zhen-zhong, LIU Hui-da, YUAN Xiao-ming. Reliability of Chinese dynamic penetration test for liquefaction evaluation of gravelly soils[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(1): 163-169. DOI: 10.11779/CJGE201601018
Citation: CAO Zhen-zhong, LIU Hui-da, YUAN Xiao-ming. Reliability of Chinese dynamic penetration test for liquefaction evaluation of gravelly soils[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(1): 163-169. DOI: 10.11779/CJGE201601018

Reliability of Chinese dynamic penetration test for liquefaction evaluation of gravelly soils

More Information
  • Received Date: May 17, 2015
  • Published Date: January 19, 2016
  • Chinese Dynamic penetration test (DPT) is an in-situ testing with the advantages of simple apparatus, economical test, and continuous data acquisition, especially for measuring bearing capacity, relative density and classification of gravelly soils. The typical gravelly soils sites are selected from the Chengdu Plain in China and the river bed of Echo dam downstream in the U.S., and China-US dynamic penetration testing and hammer energy measurements are conducted. The results show that: (1) The average of energy transfer ratios is 90% and the standard deviation is 7.7%, derived from 1321 energy time-history records, tested at 3 gravelly soils sites in the Chengdu Plain. The deviation is greatly affected by operation procedure. (2) The DPT test depth, using US drill rig assembling with Chinese DPT cone, can reach as much as 20 meters for assessing soil properties. (3) The average of energy transfer ratios is around 74% and the standard deviation is 8.7%, derived from 1438 energy time-history records, tested at 2 gravelly soils sites on the river bed of Echo dam downstream. The deviation is greatly affected by friction of drill rod and rope. (4) The DPT blows should be corrected according to different hammer energies. The proposed evaluation method for gravelly soils liquefaction, developed from the DPT database of gravelly soils liquefied during 2008 Wenchuan Earthquake, can be applicable for worldwide use.
  • [1]
    地球科学大词典编委会. 地球科学大词典[M]. 北京: 地质出版社, 2005. (Earth Science Dictionary Committee. Earth science dictionary[M]. Beijing: Geological Publishing House, 2005. (in Chinese))
    [2]
    曹振中, 徐学燕, 袁晓铭. 国内外液化砂砾土土性对比分析[J]. 防灾减灾工程学报, 2012, 32(4): 481-487. (CAO Zhen-zhong, XU Xue-yan, YUAN Xiao-ming. Characteristics comparison of gravels that liquefied following the 2008 wenchuan and previous earthquakes[J]. J. of Disaster Prevention and Mitigation Engeneering, 2012, 32(4): 481-487. (in Chinese))
    [3]
    CAO Z, YOUD T L, YUAN X. Gravelly soils that liquefied during 2008 Wenchuan, China earthquake, Ms=8.0[J]. Soil Dynamics and Earthquake Engineering, Elsevier, 2011(31): 1132-1143.
    [4]
    TSUCHIDA H. Prediction and countermeasure against the liquefaction in sand deposits[C]// Seminar in the Port and Harbor Research Institute. Yokosuka: 1970: 1-33.
    [5]
    汪闻韶, 常亚屏, 左秀泓. 饱和砂砾料在振动和往返加荷下的液化特性[C]// 水利水电科学研究院论文集(第23集). 北京: 水利出版社, 1986: 195-203. (WANG Wen-shao, CHANG Ya-ping, ZOU Xiu-hong. Liquefaction characteristics of saturated sand-gravels under vibration and cyclic loading[C]// Volume 23 collected papers of China Institute of Water Resources and Hydropower Research. Beijing: China Waterpower Press, 1986: 195-203. (in Chinese))
    [6]
    KAZAMA M, SENTO N, OMURA H, et al. Liquefaction and settlement of reclaimed ground with gravelly decomposed granite soil[J]. Soil Foundation, 2003, 43(3): 57-72.
    [7]
    EVANS Mark D, ZHOU Sheng-ping. Liquefaction behavior of sand-gravel composites[J]. Journal of Geotechnical Engineering, 1995, 121(3): 287-298.
    [8]
    WONG R T, SEED H B, CHAN C K. Liquefaction of gravelly soils under cyclic loading conditions[R]. California: University of California, 1974.
    [9]
    SIDDIQI F H. Strength evaluation of cohesionless soils with oversized particles[D]. Davis: University of California at Davis, 1984.
    [10]
    KOKUSHO T, TANAKA Y. Dynamic properties of gravel layers investigated by in- situ freezing sampling[C]// Geotech Spec Publ No56. NewYork: ASCE, 1994: 121-140.
    [11]
    KOKUSHO T, HARA T, HIRAOKA R. Undrained shear strength of granular soils with different particle gradations[J]. J Geotechnical and Geoenvironment Engineering, 2004, 130(6): 621-629.
    [12]
    袁晓铭, 曹振中. 砂砾土液化判别的基本方法及计算公式[J]. 岩土工程学报, 2011, 33(4): 509-519. (YUAN X, CAO Z. Fundamental method and formula for evaluation of liquefaction of gravel soil[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(4): 509-519. (in Chinese))
    [13]
    CAO Z, YOUD T, YUAN X. Chinese dynamic penetration test for liquefaction evaluation in gravelly soils[J]. J of Geotechnical and Geoenvironmental Engineering, ASCE, 2013, 139(8): 1320-1333.
    [14]
    YOUD T L, IDRISS I M, ANDRUS R D, et al. Liquefaction resistance of soils: Summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2001, 127(10): 817-833.
    [15]
    YOUD T L, IDRISS I M, ANDRUS R D, et al. Liquefaction resistance of soils: Summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2001, 127(10): 817-833.
  • Related Articles

    [1]FENG Huai-ping, MA De-liang, WANG Zhi-peng, CHANG Jian-mei. Measurement of resistivity of unsaturated soils using van der Pauw method[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(4): 690-696. DOI: 10.11779/CJGE201704014
    [2]LIU Song-yu, BIAN Han-liang, CAI Guo-jun, CHU Ya. Influences of water and oil two-phase on electrical resistivity of oil-contaminated soils[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(1): 170-177. DOI: 10.11779/CJGE201701016
    [3]LIU Ting-fa, NIE Yan-xia, HU Li-ming, ZHOU Qi-you, WEN Qing-bo. Model tests on moisture migration based on high-density electrical resistivity tomography method[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(4): 761-768. DOI: 10.11779/CJGE201604023
    [4]ZHAO Yan-ru, CHEN Xiang-sheng, HUANG Li-ping, ZHOU Zhong-hua, XIE Qiang. Experimental study on electrical resistivity of municipal solid waste[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(12): 2205-2216. DOI: 10.11779/CJGE201512010
    [5]GUO Xiu-jun, WU Shui-juan, MA Yuan-yuan. Quantitative investigation of landfill-leachate contaminated sand soil with electrical resistivity method[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(11): 2066-2071.
    [6]LIU Bin, NIE Li-chao, LI Shu-cai, LI Li-ping, SONG Jie, LIU Zheng-yu. Numerical forward and model tests of water inrush real-time monitoring in tunnels based on electrical resistivity tomography method[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(11): 2026-2035.
    [7]Numerical modeling of direct current electrical resistivity with 3D FEM based on PCG algorithm[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(12): 1846-1855.
    [8]ZHA Fusheng, LIU Songyu, DU Yanjun, CUI Kerui. Quantitative research on microstructures of expansive soils during swelling using electrical resistivity measurements[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(12): 1832-1839.
    [9]HAN Lihua, LIU Songyu, DU Yanjun. New method for testing contaminated soil——electrical resistivity method[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(8): 1028-1032.
    [10]SUN Yue. Numerical analysis for three-dimensional resistivity model by using finite element/infinite element methods[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(7): 733-737.
  • Cited by

    Periodical cited type(11)

    1. 吕庆强,蔡伟. 某库区移民场地条件变化后的砂土液化研究. 地质灾害与环境保护. 2024(01): 70-73 .
    2. 李雨润,范浩然,闫志晓,辛晓梅. 干砂与饱和砂土场地直斜群桩横向动力响应特性对比研究. 自然灾害学报. 2024(03): 202-216 .
    3. 杨洋,魏怡童. 基于分类树的液化概率等级评估新方法. 岩土力学. 2024(07): 2175-2186+2194 .
    4. 李萍萍,赵少飞,鲍俊文,刘子源. 基于标贯试验的含细粒砂土液化概率判别新模型. 防灾减灾工程学报. 2024(05): 1133-1139 .
    5. 袁近远,苏安双,陈龙伟,许成顺,王淼,袁晓铭,张思宇. 基于剪切波速的砾性土液化概率计算的中国方法. 岩土力学. 2024(11): 3378-3387+3415 .
    6. 袁近远,王兰民,汪云龙,袁晓铭. 不同设防水准下场地液化震害风险差异性研究. 岩石力学与工程学报. 2023(01): 246-260 .
    7. 王维铭,陈龙伟,郭婷婷,汪云龙,凌贤长. 基于中国砂土液化数据库的标准贯入试验液化判别方法研究. 岩土力学. 2023(01): 279-288 .
    8. 郝少雷,张兵,徐世光,李岳峰,陈梦瑞,邓立雄,郭薇. 基于SPT-APD-DDA的砂土液化评价方法研究. 地震工程学报. 2023(04): 877-886 .
    9. 李原,王睿,张建民. 地下水位上升对北京土层地震液化的影响. 土木工程学报. 2023(S2): 95-103 .
    10. 赵志江. 泵站基础液化判别方法分析. 水利技术监督. 2023(12): 217-221 .
    11. 邱香,袁晓铭,李鑫洋,汪云龙,李兆焱,张思宇. 不同地区数据下CPT液化判别公式的差异性与互用可行性研究. 土木工程学报. 2022(S1): 241-249 .

    Other cited types(6)

Catalog

    Article views PDF downloads Cited by(17)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return