• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
CAO Zhen-zhong, LIU Hui-da, YUAN Xiao-ming. Reliability of Chinese dynamic penetration test for liquefaction evaluation of gravelly soils[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(1): 163-169. DOI: 10.11779/CJGE201601018
Citation: CAO Zhen-zhong, LIU Hui-da, YUAN Xiao-ming. Reliability of Chinese dynamic penetration test for liquefaction evaluation of gravelly soils[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(1): 163-169. DOI: 10.11779/CJGE201601018

Reliability of Chinese dynamic penetration test for liquefaction evaluation of gravelly soils

More Information
  • Received Date: May 17, 2015
  • Published Date: January 19, 2016
  • Chinese Dynamic penetration test (DPT) is an in-situ testing with the advantages of simple apparatus, economical test, and continuous data acquisition, especially for measuring bearing capacity, relative density and classification of gravelly soils. The typical gravelly soils sites are selected from the Chengdu Plain in China and the river bed of Echo dam downstream in the U.S., and China-US dynamic penetration testing and hammer energy measurements are conducted. The results show that: (1) The average of energy transfer ratios is 90% and the standard deviation is 7.7%, derived from 1321 energy time-history records, tested at 3 gravelly soils sites in the Chengdu Plain. The deviation is greatly affected by operation procedure. (2) The DPT test depth, using US drill rig assembling with Chinese DPT cone, can reach as much as 20 meters for assessing soil properties. (3) The average of energy transfer ratios is around 74% and the standard deviation is 8.7%, derived from 1438 energy time-history records, tested at 2 gravelly soils sites on the river bed of Echo dam downstream. The deviation is greatly affected by friction of drill rod and rope. (4) The DPT blows should be corrected according to different hammer energies. The proposed evaluation method for gravelly soils liquefaction, developed from the DPT database of gravelly soils liquefied during 2008 Wenchuan Earthquake, can be applicable for worldwide use.
  • [1]
    地球科学大词典编委会. 地球科学大词典[M]. 北京: 地质出版社, 2005. (Earth Science Dictionary Committee. Earth science dictionary[M]. Beijing: Geological Publishing House, 2005. (in Chinese))
    [2]
    曹振中, 徐学燕, 袁晓铭. 国内外液化砂砾土土性对比分析[J]. 防灾减灾工程学报, 2012, 32(4): 481-487. (CAO Zhen-zhong, XU Xue-yan, YUAN Xiao-ming. Characteristics comparison of gravels that liquefied following the 2008 wenchuan and previous earthquakes[J]. J. of Disaster Prevention and Mitigation Engeneering, 2012, 32(4): 481-487. (in Chinese))
    [3]
    CAO Z, YOUD T L, YUAN X. Gravelly soils that liquefied during 2008 Wenchuan, China earthquake, Ms=8.0[J]. Soil Dynamics and Earthquake Engineering, Elsevier, 2011(31): 1132-1143.
    [4]
    TSUCHIDA H. Prediction and countermeasure against the liquefaction in sand deposits[C]// Seminar in the Port and Harbor Research Institute. Yokosuka: 1970: 1-33.
    [5]
    汪闻韶, 常亚屏, 左秀泓. 饱和砂砾料在振动和往返加荷下的液化特性[C]// 水利水电科学研究院论文集(第23集). 北京: 水利出版社, 1986: 195-203. (WANG Wen-shao, CHANG Ya-ping, ZOU Xiu-hong. Liquefaction characteristics of saturated sand-gravels under vibration and cyclic loading[C]// Volume 23 collected papers of China Institute of Water Resources and Hydropower Research. Beijing: China Waterpower Press, 1986: 195-203. (in Chinese))
    [6]
    KAZAMA M, SENTO N, OMURA H, et al. Liquefaction and settlement of reclaimed ground with gravelly decomposed granite soil[J]. Soil Foundation, 2003, 43(3): 57-72.
    [7]
    EVANS Mark D, ZHOU Sheng-ping. Liquefaction behavior of sand-gravel composites[J]. Journal of Geotechnical Engineering, 1995, 121(3): 287-298.
    [8]
    WONG R T, SEED H B, CHAN C K. Liquefaction of gravelly soils under cyclic loading conditions[R]. California: University of California, 1974.
    [9]
    SIDDIQI F H. Strength evaluation of cohesionless soils with oversized particles[D]. Davis: University of California at Davis, 1984.
    [10]
    KOKUSHO T, TANAKA Y. Dynamic properties of gravel layers investigated by in- situ freezing sampling[C]// Geotech Spec Publ No56. NewYork: ASCE, 1994: 121-140.
    [11]
    KOKUSHO T, HARA T, HIRAOKA R. Undrained shear strength of granular soils with different particle gradations[J]. J Geotechnical and Geoenvironment Engineering, 2004, 130(6): 621-629.
    [12]
    袁晓铭, 曹振中. 砂砾土液化判别的基本方法及计算公式[J]. 岩土工程学报, 2011, 33(4): 509-519. (YUAN X, CAO Z. Fundamental method and formula for evaluation of liquefaction of gravel soil[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(4): 509-519. (in Chinese))
    [13]
    CAO Z, YOUD T, YUAN X. Chinese dynamic penetration test for liquefaction evaluation in gravelly soils[J]. J of Geotechnical and Geoenvironmental Engineering, ASCE, 2013, 139(8): 1320-1333.
    [14]
    YOUD T L, IDRISS I M, ANDRUS R D, et al. Liquefaction resistance of soils: Summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2001, 127(10): 817-833.
    [15]
    YOUD T L, IDRISS I M, ANDRUS R D, et al. Liquefaction resistance of soils: Summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2001, 127(10): 817-833.
  • Related Articles

    [1]WANG Luan, SUN Rui, LIU Hui-da, YUAN Xiao-ming, WANG Yun-long. New method to compensate for membrane compliance in dynamic triaxial liquefaction tests on gravelly soils[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(12): 2281-2290. DOI: 10.11779/CJGE202012015
    [2]CAO Zhen-zhong, Kyle M. Rollins, YUAN Xiao-ming, T. Leslie Youd, Michael Talbot, Jashod Roy, Sara Amoroso. Applicability and reliability of CYY formula based on Chinese dynamic penetration test for liquefaction evaluation of gravelly soils[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(9): 1628-1635. DOI: 10.11779/CJGE201909006
    [3]LI Cheng-cheng, CAO Zhen-zhong, LI Rui-shan. Assessment criterion for level of liquefaction-induced lateral spread and its reliability analysis[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(9): 1668-1677. DOI: 10.11779/CJGE201609014
    [4]WANG Yu, WANG Chun-lei, WANG Can, CAO Qiang, YU Hong-ming. Reliability evaluation of slopes based on vector projection response surface and its application[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(9): 1434-1439.
    [5]JIA Jianqing, WANG Hongtu, LI Xiaohong, NIU Huimin, HU Guozhong. Time-reliability of tunnel support under complex conditions[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(3): 390-393.
    [6]ZHANG Wenju, ZHAO Qihua, LIU Jingjing. Reliability design of anchoring depth for friction piles[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(12): 2153-2155.
    [7]LI Husheng, YE Qianyuan. Calculation of random-fuzzy reliability of steep slopes[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(8): 1019-1022.
    [8]SU Yonghua, HE Manchao, ZHAO Minghua, LIU Xiaoming. Reliability analysis of response surface method based on interval variables[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(12): 1408-1413.
    [9]Wang Mingwu, Luo Guoyu. Application of reliability analysis to assessment of sand liquefaction potential[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(5): 542-544.
    [10]Yao Yaowu, Shen Chao. Nonlinear Stochastic FEM and its Application for Reliability Analysis[J]. Chinese Journal of Geotechnical Engineering, 1996, 18(2): 37-46.
  • Cited by

    Periodical cited type(3)

    1. 侯公羽,邵耀华,张世欧,赵铁林,刘春雷. 锚杆预紧力对锚固岩体力学性能改善的试验研究. 岩石力学与工程学报. 2025(02): 261-275 .
    2. 郑强强,荣传新,徐颖,蔡海兵,唐彬,程兵,吕闹,郭亚楠. 基于学科交叉的岩体损伤监测实验教学. 实验技术与管理. 2024(02): 244-249 .
    3. 董陇军,张义涵,胡清纯,陶晴. 复杂结构空区辨识与震源定位. 中国科学基金. 2022(03): 523-529 .

    Other cited types(4)

Catalog

    Article views (418) PDF downloads (365) Cited by(7)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return