Citation: | LI Cheng-cheng, CAO Zhen-zhong, LI Rui-shan. Assessment criterion for level of liquefaction-induced lateral spread and its reliability analysis[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(9): 1668-1677. DOI: 10.11779/CJGE201609014 |
[1] |
陈龙伟, 袁晓铭, 孙 锐. 2011年新西兰Mw6.3地震液化及岩土震害评述[J]. 世界地震工程, 2013, 29(3): 1-9. (CHEN Long-wei, YUAN Xiao-ming, SUN Rui. Review of liquefaction phenomena and geotechnical damage in the 2011 New Zealand Mw6.3 earthquake[J]. World Earthquake Engineering, 2013, 29(3): 1-9. (in Chinese))
|
[2] |
孙 锐, 袁晓铭.第11届国际地动力学和地震工程会议及第13届世界地震工程会议砂土液化研究综述[J]. 世界地震工程, 2006, 22(1): 15-20. (SUN Rui, YUAN Xiao-ming, Summarization of earthquake liquefaction on 13th WCEEand11th SDEE[J]. World Earthquake Engineering, 2006, 22(1): 15-20. (in Chinese))
|
[3] |
李兆焱, 王永志, 袁晓铭. 适用于新疆巴楚地区的CPT液化判别新方法[J]. 岩土工程学报, 2013, 35(增刊1): 140-145. (LI Zhao-yan, WANG Yong-zhi, YUAN Xiao-ming. New CPT-based prediction method for soil liquefaction applicable to Bachu region of Xinjiang[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(S1): 140-145. (in Chinese))
|
[4] |
ELGAMAL A W, YANG Z H. Numerical modeling of liquefaction一induced lateral spreading[C]// 12th World Conference on Earthquake Engineering. Auekland, 2000.
|
[5] |
蔡晓光. 液化土层两种机制下侧向大变形分析[D]. 北京:中国地震局工程力学研究所, 2004. (CAI Xiao-guang. Liquefaction-induced lateral spreading of soil layer under two mechanisms[D]. Beijing: Institute of Engineering Mechanics, China Earthquake Administration, 2004. (in Chinese))
|
[6] |
汪云龙, 袁晓铭, 殷建华. 基于光纤光栅传感技术的测量模型土体侧向变形一维分布的方法[J]. 岩土工程学报, 2013, 10: 1908-1913. (WANG Yun-long, YUAN Xiao-ming, YIN Jian-hua. A measurement method for 1-D distribution of lateral deformation of soils in shaking table tests using FBG technique[J]. Chinese Journal of Geotechnical Engineering, 2013, 10: 1908-1913. (in Chinese))
|
[7] |
汪云龙, 王维铭, 袁晓铭. 基于光纤光栅技术测量模型土体内侧向位移的植入梁法[J]. 岩土工程学报, 2013, 35(增刊1): 181-185. (WANG Yun-long, WANG Wei-ming, YUAN Xiao-ming. Embedded-beam approach for measuring interior lateral displacement of soils using FBG technique[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(S1): 181-185. (in Chinese))
|
[8] |
HAMADA M, YASUDA S, ISOYAMA R, et al. Study on liquefaction-induced permanent ground displacement[J]. Report for the Association for the Development of Earthquake Prediction. 1986.
|
[9] |
YASUDA S, NAGASE H, KIKU H, et al. Appropriate Countermeasures against Permanent Ground Displacement due to Liquefaction[C]// 10th World Conference on Earthquake Engineering. Madrid, 1992: 1471-1476.
|
[10] |
刘汉龙, 周云东, 高玉峰. 砂土地震液化后大变形特性试验研究[J]. 岩土工程学报, 2002, 24(2): 142-146. (LIU Han-long, ZHOU Yun-dong, GAO Yu-feng. Study on the behavior of large ground displacement of sand due to seismic liquefaction[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(2): 142-146. (in Chinese))
|
[11] |
张建民. 地震液化后地基大变形的实用预测方法[C]// 第八届土力学及岩土工程学术会议论文集. 南京, 1999: 573-576. (ZHANG Jian-min. Practical prediction method for large foundation deformation after earthquake[C]// 8 th Soil Mechanics and Geotechnical Engineering Academic Conference. Nanjing, 1999: 573-576. (in Chinese))
|
[12] |
BARTLETT S F, YOUD T L. Empirical analysis of horizontal ground displacement generated by liquefaction- induced lateral spread[C]// National Center for Earthquake Engineering Research Technical Report NCEER-92-0021, 1992, 114.
|
[13] |
YOUD T L, HANSEN C M, BARTLETT S F. Revised MLR equations for predicting lateral spread displacement,” Proceedings[C]// 7th U S-Japan Workshop on Earthquake Resistant Design of Lifeline Facilities and Countermeasures Against Liquefaction, Seattle, Washington, Multidisciplinary Center for Earthquake Engineering Research Technical Report MCEER-99-0019, 1999: 99-114.
|
[14] |
YOUD T L, HANSEN C M, BARTLETT S F. Revised MLR equations for prediction of lateral spread displacement[J]. Journal of Geotechnical and Geo-environmental Engineering, ASCE, 2002, 128(12): 1007-1017.
|
[15] |
WANG J, RAHMAN M S. A neural network model for liquefaction-induced horizontal ground displacement[J]. Soil Dyn Earthq Eng, 1999, 18(8): 555-568.
|
[16] |
CHIRU-DANZER M, JUANG C H, CHRISTIPHER R A, et al. Estimation of liquefaction induced horizontal displacements using artificial neural networks[J]. Can Geotech J, 2001, 38(1): 200-207.
|
[17] |
GARCÍA S R, ROMO M P, BOTERO E. A neurofuzzy system to analyze liquefaction-induced lateral spread[J]. Soil Dynamics and Earthquake Engineering, 2008. 28(3): 169-180.
|
[18] |
GOH A T C, ZHANG W G. An improvement to MLR model for predicting liquefaction-induced lateral spread using multivariate adaptive regression splines[J]. Engineering Geology, 2014, 170: 1-10.
|
[19] |
Michael J. Olsen, Steven F. Bartlett and M.EERI, Lateral spread hazard mapping of the northern salt lake valley[J]. Utah, for aM7.0 Scenario Earthquake. Earthquake Spectra, 2007, 23(1): 95-113.
|
[20] |
IDRISS I M. Response of soft soil sites during earthquakes[C]// Proceedings H Bolton Seed Memorial Symposium. California, 1990, 2: 273-290.
|
[21] |
XU Bin. An empirical study of classification and regression tree and random forests[D]. New York: State University of New York at Stony Brook, 2004.
|
[22] |
袁晓铭, 曹振中, 孙 锐, 等. 汶川8.0级地震液化特征初步研究[J]. 岩石力学与工程学报, 2009, 28(6): 1288-1296. (YUAN Xiao-ming, CAO Zhen-zhong, SUN Rui, et al. Preliminary research on liquefaction characteristics of Wenchuan 8.0 Earthquake[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(6): 1288-1296. (in Chinese))
|
[23] |
王维铭. 场地液化特征研究及液化影响因素评价[D]. 北京: 中国地震局工程力学研究所, 2013. (WANG Wei-ming. Study on liquefaction characteristics and liquefaction- influencing factors assessment. Institute of Engineering Mechanics[D]. Beijing: China Earthquake Administration, 2013. (in Chinese))
|
[1] | HUANG Xiaohu, WEI Zhaoheng, YI Wu, GUO Fei, HUANG Haifeng, XIAO Yuhuang. Mechanism of fracture preferential flow infiltration-induced shallow damage of colluvial landslides[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(6): 1136-1145. DOI: 10.11779/CJGE20230090 |
[2] | ZHANG Zhao, ZHU Liangyu, LI Guangyao, YUAN Haoyu, GAO Shuaidong, HAN Huaqiang, LIU Fengyin, QI Jilin. Analytical model for preferential infiltration into cracks in soils[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(9): 1831-1840. DOI: 10.11779/CJGE20220856 |
[3] | KONG Desen, ZHAO Mingkai, SHI Jian, TENG Sen. A model for predicting gas-water relative permeability of rock media based on fractal dimension characteristics[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(7): 1421-1429. DOI: 10.11779/CJGE20220463 |
[4] | ZHANG Peng-wei, ZHOU Yang-xin, GAO Wen-zhe, LIU Bao-guo. Multiphase flow computational model for extraction of gas hydrates in marine soft soils[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S1): 80-84. DOI: 10.11779/CJGE2022S1015 |
[5] | ZHAO Kuan-yao, XU Qiang, LIU Fang-zhou, ZHANG Xian-lin. Seepage characteristics of preferential flow in loess[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(5): 941-950. DOI: 10.11779/CJGE202005017 |
[6] | ZHANG Wen-jie, LI Jun-tao. Investigation of co-migration of heavy metal with colloid under preferential flow[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(1): 46-52. DOI: 10.11779/CJGE202001005 |
[7] | ZHANG Wen-jie, YAN Hong-gang, SUN Cheng. Breakthrough tests on preferential flow in municipal solid waste[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(7): 1316-1321. DOI: 10.11779/CJGE201807019 |
[8] | KE Han, WU Xiao-wen, ZHANG Jun, CHEN Yun-min, HU-Jie. Modeling saturated permeability of municipal solid waste based on compression change of its preferential flow and anisotropy[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(11): 1957-1964. DOI: 10.11779/CJGE201611004 |
[9] | NIU Guan-yi, CAO Yuan, WANG Tie-liang. Deduction of in-situ gas permeability test equation[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(9): 1705-1709. DOI: 10.11779/CJGE201509020 |
[10] | SUN Dongmei, ZHU Yueming, ZHANG Mingjin. Study on numerical model for water-air two-phase flow in unsaturated soil[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(4): 560-565. |