• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHANG Wen-jie, LI Jun-tao. Investigation of co-migration of heavy metal with colloid under preferential flow[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(1): 46-52. DOI: 10.11779/CJGE202001005
Citation: ZHANG Wen-jie, LI Jun-tao. Investigation of co-migration of heavy metal with colloid under preferential flow[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(1): 46-52. DOI: 10.11779/CJGE202001005

Investigation of co-migration of heavy metal with colloid under preferential flow

More Information
  • Received Date: March 31, 2019
  • Available Online: December 07, 2022
  • Most of the heavy metal pollutants in soil come from external industrial and agricultural activities. Surface soil layer is the only access through which the heavy metal can migrate downward. Because of drying shrinkage and animal or plant activities, there are macropores in surface soil, which form preferential flow channels. In some cases, these channels are the only way for the heavy metal to pass through the vadose zone. Colloid has great adsorption capacity of heavy metal and can be transported under preferential flow, so the colloid may accelerate the migration of the heavy metal. The adsorption characteristics of heavy metal cadmium and lead in brown-yellow silty clay in Shanghai and soil colloid are determined by the isothermal adsorption tests. Leaching tests are carried out using the soil columns with repeatable preferential flow characteristics to investigate the colloid-heavy metal co-migration under preferential flow condition. The results show that the soil colloid has higher adsorption capacity of heavy metal than the silty clay. When there is colloid, the outflow of cadmium is 1.49 times higher than that without colloid, and the outflow of lead is 33.88 times higher than that without colloid. By the effect of colloid, the concentrations of heavy metal adsorbed in silty clay and kept in pore solution are both lower than those without colloid, so more heavy metal migrates downward. The migration of heavy metal is obviously accelerated by the colloid under preferential flow condition. Although the source concentration and leaching time of lead are both higher than cadmium, the outflow of lead is only about 1/13 of cadmium. The migration of lead in soil is weak due to high adsorption.
  • [1]
    詹良通, 陈如海, 陈云敏, 等. 重金属在某简易垃圾填埋场底部及周边土层扩散勘查与分析[J]. 岩土工程学报, 2011, 33(6): 853-861. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201106006.htm

    ZHAN Liang-tong, CHEN Ru-hai, CHEN Yun-min. et al. Migration of heavy metals in soil strata below and around a simple dump of MSWs[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(6): 853-861. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201106006.htm
    [2]
    GU Y G, GAO Y P, LIN Q. Contamination, bioaccessibility and human health risk of heavy metals in exposed-lawn soils from 28 urban parks in southern China's largest city, Guangzhou[J]. Applied Geochemistry, 2016, 67: 52-58. doi: 10.1016/j.apgeochem.2016.02.004
    [3]
    BEVEN K, GERMANN P. Macropores and water flow in soils revisited[J]. Water Resources Research, 2013, 49(6): 3071-3092. doi: 10.1002/wrcr.20156
    [4]
    CAMOBRECO V J, RICHARDS B K, STEENHUIS T S, et al. Movement of heavy metal through undisturbed and homogenized soil columns[J]. Soil Science, 1996, 161: 740-750. doi: 10.1097/00010694-199611000-00003
    [5]
    BANKS M K, SCHWAB A P, HENDERSON C. Leaching and reduction of chromium in soil as affected by soil organic content and plants[J]. Chemosphere, 2006, 62(2): 255-264. doi: 10.1016/j.chemosphere.2005.05.020
    [6]
    WELCH J E, LUND L J. Soil properties, irrigation water quality, and soil moisture level influences on the movement of nickel in sewage sludge-treated soils[J]. Journal of Environmental Quality, 1987, 16(4): 403-410.
    [7]
    SMITH S R. Agricultural recycling of sewage sludge and the environment[J]. Environmental Pollution, 1995, 94(2): 241.
    [8]
    KIM Y J, STEENHUIS T S, NAM K. Movement of heavy metals in soil through preferential flow paths under different rainfall intensities[J]. Clean, 2008, 36(12): 984-989.
    [9]
    BEHBAHANINIA A, MIRBAGHERISA , JAVID A H. Heavy metals transport in the soil profiles under the application of sludge and waste water[J]. World Academy of Science, Engineering and Technology, 2008, 43: 53-55.
    [10]
    GARRIDO F, HELMHART M. Lead and soil properties distributions in a roadside soil: effect of preferential flow paths[J]. Geoderma, 2012, 170: 305-313. doi: 10.1016/j.geoderma.2011.10.017
    [11]
    张英虎, 汤崇军, 郑海金, 等. 土壤重金属在优先流区和基质流区迁移能力研究[J]. 土壤通报, 2015(6): 1386-1391. https://www.cnki.com.cn/Article/CJFDTOTAL-TRTB201506017.htm

    ZHANG Ying-hu, TANG Chong-jun, ZHENG Hai-jin, et al. Research of soil heavy metal mobility in preferential flow pathsand soil matrix[J]. Chinese Journal of Soil Science, 2015(6): 1386-1391. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TRTB201506017.htm
    [12]
    郑欣, 程金花, 张洪江, 等. 北京地区2种类型土壤优先流染色形态特征及其影响因素[J]. 水土保持学报, 2018, 32(3): 113-119, 131. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQS201803018.htm

    ZHANG Xin, CHENG Jin-hua, ZHANG Hong-jiang, et al. Characteristics and influencing factors of preferential flow dyeing morphology of two soils in Beijing[J]. Journal of Soil and Water Conservation, 2018, 32(3): 113-119, 131. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TRQS201803018.htm
    [13]
    KOHNE J M, MOHANTY B P. Water flow processes in a soil column with a cylindrical macropore: experiment and hierarchical modeling[J]. Water Resources Research, 2005, 41(41): 222-229.
    [14]
    ZHOU B B, LI Y, WANG Q J, et al. Preferential water and solute transport through sandy soil containing artificial macropores[J]. Environmental Earth Sciences, 2013, 70(5): 2371-2379. doi: 10.1007/s12665-013-2339-6
    [15]
    郭会荣. 优先流影响下的入渗补给过程及溶质运移实验与模拟[D]. 武汉: 中国地质大学, 2008.

    GUO Hui-rong. The Experimental Study and Numerical Simulation of Groundwater Recharge Processes and Preferential Solute Transport in Soils[D]. Wuhan: China University of Geosciences, 2008. (in Chinese)
    [16]
    GAMERDINGER A P, KAPLAN D I. Colloid transport and deposition in water-saturated yucca mountain tuff as determined by ionic strength[J]. Environmental Science and Technology, 2001, 35(16): 3326-3331.
    [17]
    SAIERS J E, HORNBERGER G M. The role of colloidal kaolinite in the transport of cesium through laboratory sand columns[J]. Water Resources Research, 1996, 32(1): 33-41.
    [18]
    GROLIMUND D, BORKOVEC M, BARMETTLER K, et al. Colloid-facilitated transport of strongly sorbing contaminants in natural porous media: a laboratory column study[J]. Environ Sci, Technol, 1996, 30: 3118-3123.
    [19]
    ROY S B, DZOMBAK D A. Chemical factors influencing colloid-facilitated transport of contaminants in porous media[J]. Environmental Science & Technology, 1997, 31(3): 658-664.
    [20]
    SPARKS D L. Environmental Soil Chemistry[M]. London: Academic Press, 2003.
    [21]
    张文杰, 严宏罡, 孙铖. 城市生活垃圾中优先流规律的穿透试验研究[J]. 岩土工程学报, 2018, 40(7): 1316-1321. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201807024.htm

    ZHANG Wen-jie, YAN Hong-gang, SUN Cheng. Breakthrough tests on preferential flow in municipal solid waste[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(7): 1316-1321. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201807024.htm
  • Cited by

    Periodical cited type(13)

    1. 肖建勇,严伟,乔世范,谢济仁,陈韶平,杨舒焜,冯超博. 基于BIM的公路边坡可视化管理方法研究. 铁道科学与工程学报. 2024(06): 2342-2358 .
    2. 张玮,马瑞良,黄震宇,叶子铭. 基于云计算平台的网络安全预警平台改进设计. 自动化技术与应用. 2023(06): 70-72+81 .
    3. 吴小林,王健,唐骁,李青朋,祁长青. 台阶式锯切开挖边坡岩体质量及稳定性评价. 工程勘察. 2023(07): 1-6 .
    4. 王军,刘志明,蔡国军,叶飞龙,宋小进. 基于砂土界面剪切试验的自传感压电土工电缆监测效果评价. 岩土工程学报. 2023(10): 2023-2031 . 本站查看
    5. 戴建炜,杨青,左天才,刘正春,刘常茂. GIS技术在UWB基站可视化模式监测中的应用. 电子设计工程. 2022(03): 136-139 .
    6. 夏元轶,符士侃,杜钰,石廷川. 基于大数据的虚拟仪器关联数据库信息分析方法. 自动化与仪器仪表. 2022(05): 232-235 .
    7. 张鹏,胡惠华,龚道平,胡杰. 硬质岩变形边坡深孔位移监测曲线表征分析. 路基工程. 2022(03): 67-72 .
    8. 陈磊,李斌,彭程,毕晓伟,杨成生. 岩溶山区滑坡监测预警云平台设计与实现. 长江科学院院报. 2022(06): 138-144 .
    9. 叶为民,孔令伟,胡瑞林,查甫生,石胜伟,刘樟荣. 膨胀土滑坡与工程边坡新型防治技术与工程示范研究. 岩土工程学报. 2022(07): 1295-1309 . 本站查看
    10. 梁琴琴,何东林,王振飞,武枝,王宗江,赵丽娜. 三维数字化矿山地质信息整合系统设计及应用. 中国金属通报. 2021(01): 237-238 .
    11. 张治国,毛敏东,PANY.T.,赵其华,吴钟腾. 隧道-滑坡相互作用影响及控制防护技术研究现状与展望. 岩土力学. 2021(11): 3101-3125 .
    12. 王霞. 基于无线传感网络的道路信息监测系统设计. 信息通信. 2020(09): 55-57 .
    13. 张月,马楠,郭阳. 油田企业高性能数据库云平台建设探索. 中国管理信息化. 2020(22): 89-90 .

    Other cited types(15)

Catalog

    Article views (377) PDF downloads (309) Cited by(28)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return