Citation: | ZHANG Peng-wei, ZHOU Yang-xin, GAO Wen-zhe, LIU Bao-guo. Multiphase flow computational model for extraction of gas hydrates in marine soft soils[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S1): 80-84. DOI: 10.11779/CJGE2022S1015 |
[1] |
SUM A K, KOH C A, SLOAN E D. Clathrate hydrates: from laboratory science to engineering practice[J]. Industrial & Engineering Chemistry Research, 2009, 48(16): 7457–7465.
|
[2] |
田慧会, 韦昌富, 颜荣涛, 等. 粉土中二氧化碳水合物分解过程的核磁试验研究[J]. 中国科学: 物理学力学天文学, 2019, 49(3): 173–180. doi: 10.3969/j.issn.0253-2778.2019.03.001
TIAN Hui-hui, WEI Chang-fu, YAN Rong-tao, et al. A NMR-based analysis of carbon dioxide hydrate dissociation process in silt[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2019, 49(3): 173–180. (in Chinese) doi: 10.3969/j.issn.0253-2778.2019.03.001
|
[3] |
DAI S, SEOL Y. Water permeability in hydrate-bearing sediments: A pore-scale study[J]. Geophysical Research Letters, 2014, 41(12): 4176–4184. doi: 10.1002/2014GL060535
|
[4] |
刘乐乐, 张准, 宁伏龙, 等. 含水合物沉积物渗透率分形模型[J]. 中国科学: 物理学力学天文学, 2019, 49(3): 165–172. https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK201903013.htm
LIU Le-le, ZHANG Zhun, NING Fu-long, et al. A fractal model for the relative permeability prediction of hydrate-bearing sediments[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2019, 49(3): 165–172. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK201903013.htm
|
[5] |
SINGH H, MYSHAKIN E M, SEOL Y. A nonempirical relative permeability model for hydrate-bearing sediments[J]. Society of Petroleum Engineers Journal, 2019, 24(2): 547–562.
|
[6] |
蔡建超, 夏宇轩, 徐赛, 等. 含水合物沉积物多相渗流特性研究进展[J]. 力学学报, 2020, 52(1): 208–223. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB202001019.htm
CAI Jian-chao, XIA Yu-xuan, XU Sai, et al. Advances in multiphase seepage characteristics of natural gas hydrate sediments[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(1): 208–223. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB202001019.htm
|
[7] |
KIM H C, BISHNOI P R, HEIDEMANN R A, et al. Kinetics of methane hydrate decomposition[J]. Chemical Engineering Science, 1987, 42(7): 1645–1653. doi: 10.1016/0009-2509(87)80169-0
|
[8] |
SUN X, NANCHARY N, MOHANTY K K. 1-D modeling of hydrate depressurization in porous media[J]. Transport in Porous Media, 2005, 58(3): 315–338. doi: 10.1007/s11242-004-1410-x
|
[9] |
KAMATH V A. A perspective on gas production from hydrates[C]// JNOC's Methane Hydrate International Symposium, 1998: 20–22.
|
[10] |
SUN X, LUO H, SOGA K. A coupled thermal-hydraulic- mechanical-chemical (THMC) model for methane hydrate bearing sediments using COMSOL Multiphysics[J]. Journal of Zhejiang University-SCIENCE A, 2018, 19(8): 600–623. doi: 10.1631/jzus.A1700464
|
[11] |
VAN GENUCHTEN M T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil Science Society of America Journal, 1980, 44(5): 892–898. doi: 10.2136/sssaj1980.03615995004400050002x
|
[12] |
MASUDA Y. Numerical calculation of gas production performance from reservoirs containing natural gas hydrates[C]// Annual Technical Conference, San Antonio, Texas, 1997.
|
[13] |
HARDWICK J S, MATHIAS S A. Masuda's sandstone core hydrate dissociation experiment revisited[J]. Chemical Engineering Science, 2018, 175: 98–109. doi: 10.1016/j.ces.2017.09.003
|
[1] | YANG Chao, XUE Hai-bin, DANG Fa-ning, WANG hui. Mechanism and influence range of stress arching effect of CFRD in narrow valley regions[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S1): 214-218. DOI: 10.11779/CJGE2021S1039 |
[2] | XU Chao, ZHANG Xing-ya, HAN Jie, YANG Yang. Trapdoor model tests on impact of loading conditions on soil arching effect[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(4): 726-732. DOI: 10.11779/CJGE201904016 |
[3] | GE Yun-feng, TANG Hui-ming, WANG Liang-qing, ZHAO Bin-bin, WU Yi-ping, XIONG Cheng-ren. Anisotropy, scale and interval effects of natural rock discontinuity surface roughness[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(1): 170-179. DOI: 10.11779/CJGE201601019 |
[4] | FANG Ying-guang, HOU Ming-xun, GU Ren-guo, CHEN Ping. Visual analysis of initiation of soil arching effect in piled embankments[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(9): 1678-1684. DOI: 10.11779/CJGE201509016 |
[5] | ZHANG Qian, LI Shu-cai, ZHANG Qian-qing, LI Li-ping, XU Fei, YANG Shang-yang. Analysis on rock-arch effect of anti-slide piles and rational pile spacing in engineering project[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(zk2): 180-185. DOI: 10.11779/CJGE2014S2030 |
[6] | FAN Li-bin, ZHANG Ding-wen, LIU Song-yu. Comparision of calculating methods for stress of soil arching effect of piled embankments[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 1155-1158. |
[7] | RUI Rui, HUANG Cheng, XIA Yuan-you, HU Gang, XIA Xiao-long. Model tests on soil arching effects of piled embankments with sand fills[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(11): 2082-2089. |
[8] | WANG Mei, LI Jing-pei. New method for active earth pressure of rigid retaining walls considering arching effect[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(5): 865-870. |
[9] | LU De-chun, CAO Sheng-tao, DU Xiu-li, ZHANG Pei. Soil arching effect under plane strain condition[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(zk1): 454-458. |
[10] | XIANG Xian-chao, ZHANG Hua, JIANG Guo-sheng, TU Peng-fei. Soil arching effect of anti-slide piles based on particle flow method[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(3): 386. |