• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
WANG Luan, SUN Rui, LIU Hui-da, YUAN Xiao-ming, WANG Yun-long. New method to compensate for membrane compliance in dynamic triaxial liquefaction tests on gravelly soils[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(12): 2281-2290. DOI: 10.11779/CJGE202012015
Citation: WANG Luan, SUN Rui, LIU Hui-da, YUAN Xiao-ming, WANG Yun-long. New method to compensate for membrane compliance in dynamic triaxial liquefaction tests on gravelly soils[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(12): 2281-2290. DOI: 10.11779/CJGE202012015

New method to compensate for membrane compliance in dynamic triaxial liquefaction tests on gravelly soils

More Information
  • Received Date: February 08, 2020
  • Available Online: December 05, 2022
  • The membrane compliance has a significant effect on the results of the triaxial liquefaction tests. The compensation method is one of the primary means to eliminate the impact of the membrane. The theoretical defects of the existing compensation methods are analyzed and verified in the comparison tests, and the new principle and method for the compensation of membrane compliance are proposed. Based on the large-scale dynamic triaxial liquefaction tests on the gravelly soils with various gravel contents and the measurement of membrane penetration volume, the feasibility and reliability of the new compensation method are verified by taking the modified pore pressure model, which can consider the membrane compliance as a reference. The research shows that the existing compensation principle will lead to inadequate compensation, which only uses the rebound water volume caused by the dynamic force as the total water supplement volume, and the new compensation principle is more scientific and reasonable, considering the effect of membrane distributary. In the dynamic triaxial liquefaction tests with different gravel contents and stresses, the results of the new method are consistent with the theoretical ones, and the variation law is uniform. Compared with the existing compensation method, the new method does not need repeated water replenishment and multiple approximations at a single compensation stage, and its operability is enhanced, and the compensation effect is superior. It is suitable for the dynamic triaxial liquefaction tests on gravelly soils and provides a new technical support for the dynamic characteristics tests on coarse-grained soils.
  • [1]
    袁晓铭, 秦志光, 刘荟达, 等. 砾性土液化的触发条件[J]. 岩土工程学报, 2018, 40(5): 777-785.

    YUAN Xiao-ming, QIN Zhi-guang, LIU Hui-da, et al. Necessary conditions of trigger liquefaction for gravelly soils layers[J]. Chinese Journal of Geotechanical Engineering, 2018, 40(5): 777-785. (in Chinese)
    [2]
    陈龙伟, 袁晓铭, 孙锐. 2011年新西兰Mw6.3地震液化及岩土震害评述[J]. 世界地震工程, 2013, 29(3): 1-9. doi: 10.3969/j.issn.1007-6069.2013.03.001

    CHEN Long-wei, YUAN Xiao-ming, SUN Rui. Review of liquefaction phenomena and geotechnical damage in the 2011 New Zealand Mw6.3 earthquake[J]. World Earthquake Engineering, 2013, 29(3): 1-9. (in Chinese) doi: 10.3969/j.issn.1007-6069.2013.03.001
    [3]
    CUBRINOVSKI M, BRAY J, DE La Torre C, et al. Liquefaction effects and associated damages observed at the Wellington Centreport from the 2016 Kaikoura earthquake[J]. Bulletin of the New Zealand Society for Earthquake Engineering, 2017, 50(2): 152-173. doi: 10.5459/bnzsee.50.2.152-173
    [4]
    EVANS D M, SEED H B. Undrained Cyclic Triaxial Testing of Gravels-the Effect of Membrane Compliance[R]. Report No.UCB/EERC-87/08. 1987.
    [5]
    NOOR M J M, NYUIN J D, DERAHMAN A. A graphical method for membrane penetration in triaxial tests on granular soils[J]. J Inst Eng, Malaysia, 2012, 73(1): 23-30.
    [6]
    王洪瑾. 橡皮膜顺变性对三轴试验中体变和孔隙水压力影响的试验研究[C]//中国土木工程学会第四届土力学及基础工程学术会议论文选集, 1983, 北京.

    WANG Hong-jin. Experimental study on the influence of membrane compliance on bulk deformation and pore water pressure in triaxial test[C]//Selected papers of the 4th soil mechanics and foundation engineering academic conference of China Civil Engineering Society, 1983, Beijing. (in Chinese)
    [7]
    SIVATHAYALAN S, VAID Y P. Truly undrained response of granular soils with no membrane-penetratio[J]. Canadian Geotechnical Journal, 1998, 35(5): 730-739. doi: 10.1139/t98-048
    [8]
    周景星, 周克骥, 王洪瑾. 动三轴试验中橡皮膜顺变性的影响及其校正方法[J]. 水利学报, 1986(5): 11-18. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB198605001.htm

    ZHOU Jing-xing, ZHOU Ke-ji, WANG Hong-jin. The membrane effect and its alignment methods in dynamic triaxial test[J]. Journal of Hydraulic Engineering, 1986(5): 11-18. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB198605001.htm
    [9]
    王昆耀, 常亚屏, 陈宁. 粗粒土试样橡皮膜嵌入影响的初步研究[J]. 水电与抽水蓄能, 2000, 24(4): 45-46. doi: 10.3969/j.issn.1671-3893.2000.04.015

    WANG Kun-yao, CHANG Ya-ping, CHEN Ning. A preliminary study on membrane penetration effects in coarse-grained soil specimens[J]. Dam Observation and Geotechnical Tests, 2000, 24(4): 45-46. (in Chinese) doi: 10.3969/j.issn.1671-3893.2000.04.015
    [10]
    BANEJEE N G, SEED H B, CHAN C K. Cyclic Behavior of Dense Coarse Grained Materials in Relation to the Seismic Stability of Dams[R]. California: Earthquake Engineering Research Center, University of California, Berkeley, 1979: 79-13.
    [11]
    TOKIMATSU K, NAKAMURA K. A liquefaction test without membrane penetration effects[J]. Journal of the Japanese Society of Soil Mechanics and Foundation Engineering, 1986, 26(4): 127-138.
    [12]
    陈春霖, 张惠明. 饱和砂土三轴试验中的若干问题[J]. 岩土工程学报, 2000, 22(6): 659-663. doi: 10.3321/j.issn:1000-4548.2000.06.005

    CHEN Chun-lin, ZHANG Hui-ming. Some problems in triaxial test on saturated sands[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(6): 659-663. (in Chinese) doi: 10.3321/j.issn:1000-4548.2000.06.005
    [13]
    YAMASHITA S, TOKI S, SUZUKI T. Effects of membrane penetration on modulus and poisson\"s ratio for undrained cyclic triaxial conditions[J]. Soils and Foundations, 1996, 36(4): 127-133. doi: 10.3208/sandf.36.4_127
    [14]
    HAERI, S M, SHAKERI, M R, SHAHCHERAGHI S A. Dynamic strength of gravelly sand with emphasis on the effect of membrane compliance[C]//14th World Conference on Earthquake Engineering, Beijing, 2008.
    [15]
    MIURA S, KAWAMURA S. A procedure minimizing membrane penetration effects in undrained triaxial test[J]. Soils and Foundations, 1996, 36(4): 119-126. doi: 10.3208/sandf.36.4_119
    [16]
    SEED R B, ANWAR H. Development of a Laboratory Technique for Correcting Results of Undrained Triaxial Shear Tests on Soils Containing Coarse Particles for Effects of Membrane Compliance[R]. California: Reprint of Stanford University Research, Leland Stanford Junior University, 1987.
    [17]
    RAMANA K V, RAJU V S. Constant-volume triaxial tests to study the effects of membrane penetration[J]. Geotechnical Testing Journal, 1981, 4(3): 117-122. doi: 10.1520/GTJ10777J
    [18]
    KRAMER S L, SIVANESWARAN N. A Nondestructive Specimen-Specific Method for Measurement of Membrane Penetration in the Triaxial Test[J]. Geotechnical Testing Journal, 1989, 12(1): 50-59. doi: 10.1520/GTJ10674J
    [19]
    谢定义. 土动力学[M]. 北京: 高等教育出版社, 2011.

    XIE Ding-yi. Soil Dynamics[M]. Beijing: Higher Education Press, 2011. (in Chinese)
    [20]
    MARTIN G R, SEED H B, FINN W D. Effects of system compliance on liquefaction tests[J]. Journal of the Geotechnical Engineering Division, 1978, 104(4): 463-479.
    [21]
    陈育民, 徐鼎平. FLAC/FLAC3D基础与工程实例[M]. 北京: 中国水利水电出版社, 2009.

    CHEN Yu-min, XU Ding-ping. FLAC/FLAC3D Fundamentals and Engineering Applications[M]. Beijing: China Water & Power Press, 2009. (in Chinese)
    [22]
    HAERI S M, SHAKERI M R. Effects of membrane compliance on pore water pressure generation in gravelly sands under cyclic loading[J]. Geotechnical Testing Journal, 2010, 33(5): 658-661.
    [23]
    刘荟达, 袁晓铭, 王鸾, 等. 宽级配砾性土橡皮膜嵌入量计算新方法[J]. 岩石力学与工程学报, 2020. doi: 10.13722/j.cnki.jrme.2019.1216.

    LIU Hui-da, YUAN Xiao-ming, WANG Luan, et al. Research and new calculation formula of membrane penetration in wide graded gravel soils sample[J]. Chinese Journal of Rock Mechanics and Engineering, 2020. doi: 10.13722/j.cnki.jrme.2019.1216. (in Chinese)
    [24]
    TANAKA Y, KOKUSHO T, YOSHIDA Y, et al. Method for evaluating membrane compliance and system compliance in undrained cyclic shear tests[J]. Soils and Foundations, 1991, 31(3): 30-42.
    [25]
    MARTIN G R, FINN W D I, SEED H B. Foundamentals of Liquefaction under Cyclic Loading[J]. Journal of the Geotechnical Engineering Division ASCE, 1975, 101(GT6): 551-569.
    [26]
    BYRNE P M. A cyclic shear-volume coupling and pore pressure model for sand[C]//Second International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics. 1991, Saint Louis.
    [27]
    ISHIHARA K, TATSUOKA F, YASUDO S. Undrained deformation and liquefaction of sand under cyclic stresses[J]. Soils and Foundations, 1975, 15(1): 29-44.
    [28]
    王昆耀, 常亚屏, 陈宁. 饱和砂砾料液化特性的试验研究[J]. 水利学报, 2000(2): 37-41. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB200002006.htm

    WANG Kun-yao, CHANG Ya-ping, CHEN Ning. Experimental study of liquefaction characteristics of saturated sandy gravel[J]. Journal of Hydraulic Engineering, 2000(2): 37-41. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB200002006.htm
    [29]
    王艳丽, 饶锡保, 王占彬, 等. 含砾量对饱和砂砾土液化特性的影响[J]. 地震工程学报, 2015, 37(2): 390-396. https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ201502018.htm

    WANG Yan-li, RAO Xi-bao, WANG Zhan-bin, et al. Effect of gravel content on liquefaction characteristics of saturated sandy gravels[J]. China Earthquake Engineering Journal, 2015, 37(2): 390-396. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ201502018.htm
    [30]
    EVANS M D, ZHOU S. Liquefaction behavior of sand-gravel composites[J]. Journal of Geotechnical Engineering, 1995, 121(3): 287-298.
    [31]
    土工试验规程:SL237—1999[S]. 1999.

    Geotechnical Test Rules: SL237—1999[S]. 1999. (in Chinese)
    [32]
    丰万玲, 石兆吉. 判别水平土层液化势的孔隙水压力分析方法[J]. 工程抗震, 1988(4): 30-33. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKZ198804006.htm

    FENG Wan-ling, SHI Zhao-ji. Pore pressure analysis method for estimating liquefaction potential of horizontal soil strata[J]. Earthquake Resistant, 1988(4): 32-33. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCKZ198804006.htm
    [33]
    孙锐, 袁晓铭. 非均等固结下饱和砂土孔压增量简化计算公式[J]. 岩土工程学报, 2005, 27(9): 1021-1025. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200509009.htm

    SUN Rui, YUAN Xiao-ming. Simplified incremental formula for estimating pore pressure of saturated sands under anisotropic consolidation[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(9): 1021-1025. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200509009.htm
  • Related Articles

    [1]FU Haiqing, YI Jixiang, FENG Luwei, YANG Jiyuan. In-situ liquefaction tests considering effects of overburden pressure[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(3): 558-566. DOI: 10.11779/CJGE20230096
    [2]ZHOU Yanguo, MA Qiang, LIU Kai, CAO Yuan, CHEN Yunmin. Centrifugal shaking table tests on soil liquefaction and progress of LEAP projects[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(1): 54-62. DOI: 10.11779/CJGE20221213
    [3]MA Weigong, WANG Lanmin, XU Shiyang, LI Dengke, CHAI Shaofeng. Shaking table tests on seismic liquefaction characteristics of soil surrounding tunnels in saturated loess stratum[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S2): 171-176. DOI: 10.11779/CJGE2023S20021
    [4]MA Xian-feng, LIU Zheng-hao, WU Di, DONG Yi-jin. Correction of seismic calculation method for silty clay tunnels based on shaking table test[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S2): 1-5. DOI: 10.11779/CJGE2022S2001
    [5]YUAN Jin-yuan, LI Tian-ning, WANG Lan-min, WANG Yun-long, CHEN Long-wei, LI Zhao-yan, YUAN Xiao-ming, WANG Yong-zhi, CHEN Zhuo-shi, LI Rui-shan. New method for calculating probability of sand liquefaction[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(3): 541-549. DOI: 10.11779/CJGE202203016
    [6]XU Wei-wei, CHEN Sheng-shui, FU Zhong-zhi, JI En-yue. Measuring method for membrane penetration capacity of coarse-grained soil in triaxial tests[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(8): 1536-1541. DOI: 10.11779/CJGE202108019
    [7]LIU Han-long, WANG Wei-guo, LIU Jun, CHEN Yu-min, YANG Gui. Large-scale field tests on blast-induced liquefaction in saturated sand[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(4): 601-608. DOI: 10.11779/CJGE201704003
    [8]CHEN Yu-min, HE Sen-kai, WU Hai-qing, XU Jun. Model tests on liquefaction resistance of desaturation measures of electrolysis[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(4): 726-733. DOI: 10.11779/CJGE201604018
    [9]CAO Zhen-zhong, LIU Hui-da, YUAN Xiao-ming. Reliability of Chinese dynamic penetration test for liquefaction evaluation of gravelly soils[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(1): 163-169. DOI: 10.11779/CJGE201601018
    [10]CHEN Yumin, LIU Hanlong, SHAO Guojian, ZHAO Nan. Laboratory tests on flow characteristics of liquefied and post-liquefied sand[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(9): 1408-1413.
  • Cited by

    Periodical cited type(7)

    1. 陈凌宇. 考虑子盆地影响的二维盆地非线性地震反应研究. 江苏建筑. 2024(05): 23-25+50 .
    2. 周青帅,刘启方. 不均匀软弱夹层对沉积盆地地震动放大的影响研究. 地震工程与工程振动. 2023(06): 183-193 .
    3. 魏成前. 入射波的卓越频率对盆地地震动响应的影响. 四川建材. 2022(01): 249-250 .
    4. 邵祖鹏,刘启方. 震源深度对二维盆地放大的影响研究. 地震研究. 2022(03): 489-497 .
    5. 刘启方. 2014年鲁甸地震龙头山镇盆地共振效应研究. 地震工程与工程振动. 2021(02): 43-52 .
    6. 于彦彦,丁海平. 盆地深度对盆地地表地震动及次生面波的影响. 地震工程与工程振动. 2021(03): 147-156 .
    7. 强生银,刘启方,温瑞智,王宏伟. 基于二维数值模拟的盆地地震动放大系数. 地震工程与工程振动. 2021(04): 131-144 .

    Other cited types(6)

Catalog

    Article views (237) PDF downloads (105) Cited by(13)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return