• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
FENG Tugen, LI Zhiping, ZHANG Jian, XIE Kang. Sludge solidification based on carbon dioxide foam cement slurry[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(12): 2538-2547. DOI: 10.11779/CJGE20230869
Citation: FENG Tugen, LI Zhiping, ZHANG Jian, XIE Kang. Sludge solidification based on carbon dioxide foam cement slurry[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(12): 2538-2547. DOI: 10.11779/CJGE20230869

Sludge solidification based on carbon dioxide foam cement slurry

More Information
  • Received Date: September 07, 2023
  • Available Online: May 10, 2024
  • River and lake dredging will produce a large amount of dredged sludge with high water content and compressibility. Using the carbon dioxide as the foam gas source to prepare carbon dioxide foam cement slurry and use it as the solidification material to carry out sludge improvement is of great significance to the reuse of dredged sludge resources and to achieve the goal of carbon neutrality. Based on the traditional air foam cement slurry preparation technology and ordinary cement-based carbon fixation mechanism, the carbon dioxide foam cement slurry is prepared with carbon dioxide instead of air, which is used to solidify the sludge. The mechanical properties of stone test blocks formed after the curing of foam slurry and the mechanical properties and microstructure of filler formed after the solidification of dredged sludge are studied experimentally. The results show that the best combination of foaming agent and foam stabilizer is A2 4g/L, C1 5g/L. The conversion rate of Ca (OH)2 and CO2 to CaCO3 in the cement hydration hydrolysis product increases by about 26.1%. The optimal content of fly ash in cement slurry is 30%. The unconfined compressive strength, internal friction angle and cohesion of the solidified materials formed after curing approximately linearly increase with the content of foam slurry, while the permeability coefficient approximately linearly decreases with the content of foam slurry. The research results provide important guidance for the engineering application of sludge solidification and the way to "turn waste into treasure" of carbon dioxide.
  • [1]
    王东星, 徐卫亚. 固化淤泥长期强度和变形特性试验研究[J]. 中南大学学报(自然科学版), 2013, 44(1): 332-339.

    WANG Dongxing, XU Weiya. Experimental study on long-term strength and deformation properties of solidified sediments[J]. Journal of Central South University (Science and Technology), 2013, 44(1): 332-339. (in Chinese)
    [2]
    丁建文, 张帅, 洪振舜, 等. 水泥-磷石膏双掺固化处理高含水率疏浚淤泥试验研究[J]. 岩土力学, 2010, 31(9): 2817-2822. doi: 10.3969/j.issn.1000-7598.2010.09.021

    DING Jianwen, ZHANG Shuai, HONG Zhenshun, et al. Experimental study of solidification of dredged clays with high water content by adding cement and phosphogypsum synchronously[J]. Rock and Soil Mechanics, 2010, 31(9): 2817-2822. (in Chinese) doi: 10.3969/j.issn.1000-7598.2010.09.021
    [3]
    章荣军, 董超强, 郑俊杰, 等. 絮凝剂和缓凝剂对水泥固化疏浚淤泥浆效率的影响研究[J]. 岩土工程学报, 2019, 41(10): 1928-1935. doi: 10.11779/CJGE201910018

    ZHANG Rongjun, DONG Chaoqiang, ZHENG Junjie, et al. Influences of flocculant and retarder on solidification efficiency of cement in treatment of dredged mud slurry[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(10): 1928-1935. (in Chinese) doi: 10.11779/CJGE201910018
    [4]
    王协群, 刘宁, 李智奇, 等. 干湿循环作用下氯氧镁水泥基多相胶凝材料改性固化淤泥的水力-力学特性[J]. 岩土工程学报, 2023, 45(10): 2004-2013. doi: 10.11779/CJGE20220846

    WANG Xiequn, LIU Ning, LI Zhiqi, et al. Hydro-mechanical properties of sludge stabilized with magnesium oxychloride cement-based multi-cementitious materials under influences of drying-wetting cycles[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(10): 2004-2013. (in Chinese) doi: 10.11779/CJGE20220846
    [5]
    乔京生, 王旭影, 王冠泓, 等. 粒化高炉矿渣微粉固化淤泥质土的动力特性及微观机理[J]. 硅酸盐通报, 2021, 40(7): 2306-2312.

    QIAO Jingsheng, WANG Xuying, WANG Guanhong, et al. Dynamic characteristics and microscopic mechanism of muddy clay solidified by ground granulated blast-furnace slag[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(7): 2306-2312. (in Chinese)
    [6]
    吴俊, 征西遥, 杨爱武, 等. 矿渣-粉煤灰基地质聚合物固化淤泥质黏土的抗压强度试验研究[J]. 岩土力学, 2021, 42(3): 647-655.

    WU Jun, ZHENG Xiyao, YANG Aiwu, et al. Experimental study on the compressive strength of muddy clay solidified by the one-part slag-fly ash based geopolymer[J]. Rock and Soil Mechanics, 2021, 42(3): 647-655. (in Chinese)
    [7]
    邓琪丰, 刘卫东, 韩云婷. 发泡剂对淤泥固化性能的影响研究[J]. 新型建筑材料, 2022, 49(7): 138-143.

    DENG Qifeng, LIU Weidong, HAN Yunting. Study on the effect of foaming agent on the solidification performance of silt[J]. New Building Materials, 2022, 49(7): 138-143. (in Chinese)
    [8]
    JONES M, MCCARTHY A. Utilising unprocessed low-lime coal fly ash in foamed concrete[J]. Fuel, 2005, 84(11): 1398-1409. doi: 10.1016/j.fuel.2004.09.030
    [9]
    JITCHAIYAPHUM K, SINSIRI T, CHINDAPRASIRT P. Cellular lightweight concrete containing pozzolan materials[J]. Procedia Engineering, 2011, 14: 1157-1164. doi: 10.1016/j.proeng.2011.07.145
    [10]
    KEARSLEY E P, WAINWRIGHT P J. Porosity and permeability of foamed concrete[J]. Cement and Concrete Research, 2001, 31(5): 805-812. doi: 10.1016/S0008-8846(01)00490-2
    [11]
    GOUAL M S, BALI A, DE BARQUIN F, et al. Isothermal moisture properties of clayey cellular concretes elaborated from clayey waste, cement and aluminium powder[J]. Cement and Concrete Research, 2006, 36(9): 1768-1776. doi: 10.1016/j.cemconres.2005.12.017
    [12]
    胡焕校, 罗玮, 唐良智, 等. 轻质泡沫水泥注浆材料的应用研究[J]. 中南林业科技大学学报, 2011, 31(2): 82-85.

    HU Huanxiao, LUO Wei, TANG Liangzhi, et al. The application research of lightweight foam cement in the grouting materials[J]. Journal of Central South University of Forestry & Technology, 2011, 31(2): 82-85. (in Chinese)
    [13]
    蔡光华, 刘松玉, 张正甫, 等. 二氧化碳泡沫法碳化加固软弱土的初探研究[J]. 地下空间与工程学报, 2015, 11(增刊1): 34-38.

    CAI Guanghua, LIU Songyu, ZHANG Zhengfu, et al. Preliminary study on carbonation of soft soil by carbon dioxide foam method[J]. Chinese Journal of Underground Space and Engineering, 2015, 11(S1): 34-38. (in Chinese)
    [14]
    NEVES A Jr, TOLEDO FILHO R D, DE MORAES REGO FAIRBAIRN E, et al. The effects of the early carbonation curing on the mechanical and porosity properties of high initial strength Portland cement pastes[J]. Construction and Building Materials, 2015, 77: 448-454. doi: 10.1016/j.conbuildmat.2014.12.072
    [15]
    ZHA X, WANG H, FENG G. The experimental research on the influence of silica fume on the property of cement-based materials[J]. Journal of Hebei Institute of Architecture and Civil Engineering, 2012: 514-518.
    [16]
    通用硅酸盐水泥: GB 175—2023[S]. 北京: 中国标准出版社, 2023.

    Common Portland Cement: GB 175—2023[S]. Beijing: Standards Press of China, 2023. (in Chinese)
    [17]
    用于水泥和混凝土中的粉煤灰: GB/T 1596—2017[S]. 北京: 中国标准出版社, 2023.

    Fly Ash Used for Cement and Concrete: GB/T 1596—2017[S]. Beijing: Standards Press of China, 2017. (in Chinese)
    [18]
    公路路基设计规范: JTG D30—2004[S]. 北京: 人民交通出版社, 2004.

    Specifications for Design of Highway Subgrades: JTG D30—2004[S]. Beijing: China Communications Press, 2004. (in Chinese)
  • Related Articles

    [1]Research on the preparation method and physical-mechanical properties of carbon sequestration lightweight soil[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240795
    [2]WANG Xiequn, LIU Ning, LI Zhiqi, HAN Zhong, ZOU Weilie. Hydro-mechanical properties of sludge stabilized with magnesium oxychloride cement-based multi-cementitious materials under influences of drying-wetting cycles[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(10): 2004-2013. DOI: 10.11779/CJGE20220846
    [3]ZHANG Wen-jun, CAO Wen-zhen. Mechanical and waterproof performances of joints of shield tunnels with large cross-section under earthquakes[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(4): 653-660. DOI: 10.11779/CJGE202104007
    [4]WANG Zhen-hua, XIANG Wei, WU Xue-ting, CUI De-shan. Influences of alkaline oxidant on strength of cement-stabilized sludge[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(4): 693-699. DOI: 10.11779/CJGE201904012
    [5]WANG Jing, LI Tao. Physical and mechanical properties of core and filter membrane for plastic vertical drains[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(zk1): 125-129. DOI: 10.11779/CJGE2016S1023
    [6]ZHANG Ming-ju, ZHAO Hong-chao. Experimental study on mechanical properties of hoop-disconnectable coupling in internal support system of excavation engineering[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(zk2): 418-423. DOI: 10.11779/CJGE2014S2073
    [7]CHEN You-liang, WANG Peng, ZHANG Xue-wei, DU Xi. Experimental research on mechanical properties of granite in chemical dissolution under freeze-thaw cycles[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(12): 2226-2235. DOI: 10.11779/CJGE201412010
    [8]XU Jin-yu, LIU Shi. Effect of impact velocity on dynamic mechnaical behaviors of marble after high temperatures[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(5): 879-883.
    [9]YANG Yong-ming, JU Yang, CHEN Jia-liang, ZHAO Xi. Mechanical properties of porous rock media subjected to temperature effect[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(5): 856-864.
    [10]WANG Xiao-bin, YANG Ping, WANG Hai-bo, DAI Hai-ming. Experimental study on effects of freezing and thawing on mechanical properties of clay[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(11): 1768-1772 .
  • Cited by

    Periodical cited type(10)

    1. 张翔,陈莹,雷真,范翔,赵彦淇. 高温冷热循环对花岗岩物理力学性能的影响. 科学技术与工程. 2025(02): 737-752 .
    2. 翟明磊,李振华,杜锋,白海波,王文强. 考虑浆液渗流–岩体变形耦合作用的裂隙注浆模拟试验系统研制与应用. 岩石力学与工程学报. 2024(04): 878-889 .
    3. 周新,盛建龙,叶祖洋. 基于LBM的粗糙裂隙内两相驱替渗流特性模拟研究. 力学学报. 2024(05): 1475-1487 .
    4. 崔溦,裴介渲,江志安. 动水作用下岩体裂隙中颗粒运动规律的试验研究. 岩土力学. 2024(10): 2870-2878 .
    5. 罗涛,黄正濛,李兵磊,刘谦,刘辉,陈志强. 含二维和三维预制裂隙的脆性岩石试样的破坏特征数值验证. 南昌大学学报(工科版). 2024(03): 345-350 .
    6. 孙强,高千,张玉良,胡建军,耿济世,周书涛,袁士豪. 干热岩开发中高温水-岩作用下岩石应力腐蚀及多场损伤问题. 地球科学与环境学报. 2023(03): 460-473 .
    7. 张乐 ,杨志兵 ,李东奇 ,陈益峰 . 浆液在透明复制裂隙中驱替行为的可视化试验研究. 岩土力学. 2023(06): 1708-1718 .
    8. 孔德森,赵明凯,时健,滕森. 基于分形维数特征的岩石介质气-水相对渗透率预测模型研究. 岩土工程学报. 2023(07): 1421-1429 . 本站查看
    9. 吕鑫,杨科,方珏静,段敏克,王于,张寨男. 采空区破碎岩体负压注浆加固试验研究与机制分析. 岩石力学与工程学报. 2023(S2): 4174-4188 .
    10. 李奔,刘汉乐,李培华,程锡治,王清,黄仕龙,刘新宇,金明哲. 碳酸盐岩石裂隙中DNAPL污染物迁移过程的电阻率成像. 地球物理学进展. 2023(06): 2704-2713 .

    Other cited types(6)

Catalog

    Article views (337) PDF downloads (113) Cited by(16)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return