• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
FU Guiyong, XIAO Yang, SHI Jinquan, ZHOU Hang, LIU Hanlong. Experimental study on degradation of EICP and xanthan gum treated calcareous silt under wetting-drying cycles[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(11): 2341-2351. DOI: 10.11779/CJGE20230748
Citation: FU Guiyong, XIAO Yang, SHI Jinquan, ZHOU Hang, LIU Hanlong. Experimental study on degradation of EICP and xanthan gum treated calcareous silt under wetting-drying cycles[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(11): 2341-2351. DOI: 10.11779/CJGE20230748

Experimental study on degradation of EICP and xanthan gum treated calcareous silt under wetting-drying cycles

More Information
  • Received Date: August 03, 2023
  • Available Online: April 17, 2024
  • The biopolymer (BP) has been an emerging environment-friendly biomaterial for soil reinforcement in recent years. However, due to its water solubility, the strength of the BP-stabilized soil gradually deteriorates under cyclic wetting-drying conditions. Therefore, it is very important to improve the water resistance of the BP-strengthened soil. In this study, the calcareous silt in the South China Sea was reinforced by the plant urease-induced calcium carbonate precipitation (EICP) combined with the xanthan gum (XG). A series of physical, mechanical and microscopic tests are carried out on the samples under different wetting-drying cycles. The test results show that with the increase of the XG content and plant urease concentration, the unconfined compressive strength of the XG-stabilized soil and XG-EICP-stabilized soil increases significantly. With the increase of the wetting-drying cycles, the strength decrease of XG-stabilized soil is greater than that of the joint-stabilized soil, and the joint-stabilized soil has better resistance to the wetting-drying cycles. The results of the EICP and XG-EICP solution tests show that the XG can form a water-insoluble gel-like precipitate in the EICP solution, and the calcium carbonate particles attached to the XG-EICP precipitate are larger than those produced by the pure EICP. The tests verify the feasibility of the EICP to improve the erosion resistance of the biopolymer-solidified soils against the wetting-drying cycles, and it is expected to provide new ideas and methods for marine soil reinforcement.
  • [1]
    XIAO Y, STUEDLEIN A W, RAN J, et al. Effect of particle shape on strength and stiffness of biocemented glass beads[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2019, 145(11): 1-9.
    [2]
    倪静, 王子腾, 耿雪玉. 植物–生物聚合物联合法固土的试验研究[J]. 岩土工程学报, 2020, 42(11): 2131-2137. doi: 10.11779/CJGE202011019

    NI Jing, WANG Ziteng, GENG Xueyu. Experimental study on combined plant-biopolymer method for soil stabilization[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(11): 2131-2137. (in Chinese) doi: 10.11779/CJGE202011019
    [3]
    李昊, 唐朝生, 尹黎阳, 等. MICP-FR协同作用改善钙质砂的力学性能及抗侵蚀试验研究[J]. 岩土工程学报, 2021, 43(10): 1941-1949. doi: 10.11779/CJGE202110021

    LI Hao, TANG Chaosheng, YIN Liyang, et al. Experimental study on surface erosion resistances and mechanical behavior of MICP-FR-treated calcareous sand[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(10): 1941-1949. (in Chinese) doi: 10.11779/CJGE202110021
    [4]
    CHEN C H, WEI K, GU J Y, et al. Combined effect of biopolymer and fiber inclusions on unconfined compressive strength of soft soil[J]. Polymers, 2022, 14(4): 787. doi: 10.3390/polym14040787
    [5]
    李召峰, 高益凡, 张健, 等. 水溶性植物胶改性水泥–水玻璃封堵材料试验研究[J]. 岩土工程学报, 2020, 42(7): 1312-1321. doi: 10.11779/CJGE202007015

    LI Zhaofeng, GAO Yifan, ZHANG Jian, et al. Experimental study of water-soluble vegetable gum-modified cement-sodium silicate plugging materials[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(7): 1312-1321. (in Chinese) doi: 10.11779/CJGE202007015
    [6]
    张胜杰, 王鸥, 王天亮, 等. 黄原胶及瓜尔胶改良尾矿砂强度特性及微观机制[J]. 工程地质学报, 2023, 31(2): 441-448.

    ZHANG Shengjie, WANG Ou, WANG Tianliang, et al. Strength improvement and microscopic mechanisms of tailings sands using xanthan gum and guar gum[J]. Journal of Engineering Geology, 2023, 31(2): 441-448. (in Chinese)
    [7]
    MANIVASAGAN P, KIM S K. Extracellular polysaccharides produced by marine bacteria[J]. Advances in Food and Nutrition Research, 2014, 72: 79-94.
    [8]
    CABALAR A F, WISZNIEWSKI M, SKUTNIK Z. Effects of xanthan gum biopolymer on the permeability, odometer, unconfined compressive and triaxial shear behavior of a sand[J]. Soil Mechanics and Foundation Engineering, 2017, 54(5): 356-361. doi: 10.1007/s11204-017-9481-1
    [9]
    刘瑾, 车文越, 郝社锋, 等. 基于CT技术的黄原胶加固土干湿循环条件下力学性能和微观结构劣化机制研究[J]. 岩土工程学报, 2024, 46(5): 1119-1126. doi: 10.11779/CJGE20230165

    LIU Jin, CHE Wenyue, HAO Shefeng, et al. Study on deterioration mechanism of mechanical property and microscale structure in Xanthan gum reinforced soil under dry and wet cycle based on CT scanning technology[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(5): 1119-1126. (in Chinese) doi: 10.11779/CJGE20230165
    [10]
    王天亮, 王林, 刘松松, 等. 黄原胶和瓜尔胶改良膨胀土力学特性试验研究[J]. 中国铁道科学, 2023, 44(2): 1-10.

    WANG Tianliang, WANG Lin, LIU Songsong, et al. Experimental study on mechanical properties of expansive soil improved by xanthan gum and guar gum[J]. China Railway Science, 2023, 44(2): 1-10. (in Chinese)
    [11]
    MUGUDA S, LUCAS G, HUGHES P, et al. Durability and hygroscopic behaviour of biopolymer stabilised earthen construction materials[J]. Construction and Building Materials, 2020, 259: 1-15.
    [12]
    宋泽卓, 郝社锋, 梅红, 等. 干湿循环条件下生物聚合物改良砂土强度特性[J]. 复合材料学报, 2023, 40(4): 2285-2295.

    SONG Zezhuo, HAO Shefeng, MEI Hong, et al. Strength characteristics of biopolymer modified sand under dry-wet cycle[J]. Acta Materiae Compositae Sinica, 2023, 40(4): 2285-2295. (in Chinese)
    [13]
    SHI J Q, XIAO Y, FU G Y, et al. Calcareous silt earthen construction using biopolymer reinforcement [J]. Journal of Building Engineering, 2023: 1-13.
    [14]
    ALMAJED A, LATEEF M A, MOGHAL A A B, et al. State-of-the-art review of the applicability and challenges of microbial-induced calcite precipitation (MICP) and enzyme-induced calcite precipitation (EICP) techniques for geotechnical and geoenvironmental applications[J]. Crystals, 2021, 11(4): 1-22.
    [15]
    ARAB M G, OMAR M, ALMAJED A, et al. Hybrid technique to produce bio-bricks using enzyme-induced carbonate precipitation (EICP) and sodium alginate biopolymer[J]. Construction and Building Materials, 2021, 284: 1-12.
    [16]
    LO C-Y, TIRKOLAEI H K, HUA M, et al. Durable and ductile double-network material for dust control [J]. Geoderma, 2020, 361: 1-10.
    [17]
    HAMDAN N, ZHAO Z, MUJICA M, et al. Hydrogel-assisted enzyme-induced carbonate mineral precipitation[J]. Journal of Materials in Civil Engineering, 2016, 28(10): 4016089. doi: 10.1061/(ASCE)MT.1943-5533.0001604
    [18]
    FREITAS I R, CORTEZ-VEGA W R, PIZATO S, et al. Xanthan gum as a carrier of preservative agents and calcium chloride applied on fresh-cut apple[J]. Journal of Food Safety, 2013, 33(3): 229-238. doi: 10.1111/jfs.12044
    [19]
    SHI J Q, HAEGEMAN W, CNUDDE V. Anisotropic small-strain stiffness of calcareous sand affected by sample preparation, particle characteristic and gradation[J]. Geotechnique, 2021, 71(4): 305-319. doi: 10.1680/jgeot.18.P.348
    [20]
    FIORAVANTE V. Anisotropy of small strain stiffness of Ticino and Kenya sands from seismic wave propagation measured in triaxial testing[J]. Soils and Foundations, 2000, 40(4): 129-142. doi: 10.3208/sandf.40.4_129
    [21]
    土工试验方法标准: GB/T 50123—2019[S]. 北京: 中国计划出版社, 2019.

    Standard for geotechnical testing method: GB/T 50123—2019[S]. Beijing: China Planning Press, 2019. (in Chinese)
    [22]
    GARCIA-OCHOA F, CASAS J A, MOHEDANO A F. Xanthan precipitation from solutions and fermentation broths[J]. Separation Science and Technology, 1993, 28(6): 1303-1313. doi: 10.1080/01496399308018038
    [23]
    CABALAR A F, AWRAHEEM M H, KHALAF M M. Geotechnical properties of a low-plasticity clay with biopolymer[J]. Journal of Materials in Civil Engineering, 2018, 30(8): 1-10.
    [24]
    BERGMANN D, FURTH G, MAYER C. Binding of bivalent cations by xanthan in aqueous solution[J]. International Journal of Biological Macromolecules, 2008, 43(3): 245-251. doi: 10.1016/j.ijbiomac.2008.06.001
    [25]
    IZAWA H, KADOKAWA J I. Preparation and characterizations of functional ionic liquid-gel and hydrogel materials of xanthan gum[J]. Journal of Materials Chemistry, 2010, 20(25): 5235-5241. doi: 10.1039/c0jm00595a
    [26]
    TA X, ABBASI B, MUHUNTHAN B, et al. Monitoring of low-frequency seismic responses during microbial biofilm and EPS formations in unconsolidated sediments[J]. Environmental Geotechnics, 2021, 9(8): 524-533.
    [27]
    史金权, 肖杨, 刘汉龙, 等. 钙质砂小应变初始剪切模量试验研究[J]. 岩土工程学报, 2022, 44(2): 324-333. doi: 10.11779/CJGE202202014

    SHI Jinquan, XIAO Yang, LIU Hanlong, et al. Experimental study on small-strain shear modulus of calcareous sand[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(2): 324-333. (in Chinese) doi: 10.11779/CJGE202202014
    [28]
    AHENKORAH I, RAHMAN M M, KARIM M R, et al. A review of enzyme induced carbonate precipitation (EICP): the role of enzyme kinetics [J]. Sustainable Chemistry, 2021, 2(1): 92-114. doi: 10.3390/suschem2010007
  • Cited by

    Periodical cited type(9)

    1. 张慧梅,马志敏,陈世官,王赋宇. 正交-响应面法在PBM细观参数标定中的应用. 水资源与水工程学报. 2024(02): 183-191 .
    2. 刘红帅,张东涛. 基于正交-响应面法的砂土细观参数标定. 吉林大学学报(地球科学版). 2024(04): 1280-1290 .
    3. 姜玥,邹文栋. 基于PFC~(3D)的空心圆柱灰砂岩宏细观参数相关性研究. 煤炭科学技术. 2024(10): 78-89 .
    4. 付旭,侯定贵,李茜,王林台,刘晓立. 软土蠕变颗粒流宏细观参数特征及标定方法. 土工基础. 2023(03): 501-505 .
    5. 王晋伟,迟世春,闫世豪,郭宇,周新杰. 室内缩尺级配堆石料力学参数的表征单元体积. 浙江大学学报(工学版). 2023(07): 1418-1427 .
    6. 张杰,聂如松,黄茂桐,谭永长,肖玲. 基于柔性边界的非饱和接触模型参数标定方法. 工程科学与技术. 2023(06): 132-141 .
    7. 崔熙灿,张凌凯,王建祥. 高堆石坝砂砾石料的细观参数反演及三轴试验模拟. 农业工程学报. 2022(04): 113-122 .
    8. 董建鹏,李辉. 黄土颗粒流宏细观对应关系与参数标定方法研究. 水利水电技术(中英文). 2022(04): 180-191 .
    9. 徐锦元,张政武. 可调拱梁稳定性分析. 机械研究与应用. 2021(02): 13-17 .

    Other cited types(20)

Catalog

    Article views (434) PDF downloads (148) Cited by(29)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return