YE Wei-min, WAN Min, CHEN Bao, CUI Yu-jun, WANG Ju. Micro-structural behaviors of densely compacted GMZ01 bentonite under drying/wetting cycles[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(8): 1173-1177.
    Citation: YE Wei-min, WAN Min, CHEN Bao, CUI Yu-jun, WANG Ju. Micro-structural behaviors of densely compacted GMZ01 bentonite under drying/wetting cycles[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(8): 1173-1177.

    Micro-structural behaviors of densely compacted GMZ01 bentonite under drying/wetting cycles

    More Information
    • Published Date: August 14, 2011
    • With temperature and suction control, the evaluation of microstructure of densely compacted GMZ01 bentonite under different constraint conditions is conducted under wetting/drying cycles. The results indicate that for high suction (> 5 MPa), there is a significant difference between the effects of the drying/wetting cycles on the inter-aggregate pores and the intra-aggregate pores. Following the wetting path, all the pores with different sizes expand at different levels. While following the drying process, some inter-aggregate pores with larger size (>3000 nm) shrink, but the intra-aggregate pores almost do not change with the increase of suction. For confined GMZ01 bentonite specimen, when it hydrates to 5.1 MPa, the swelling of aggregates squeezes into the large pores, which causes the volume of inter-aggregate pores to reduce rapidly. However, the volume of the intra-aggregate pores almost unchanges. After that, when the specimen dehydrates to 103 MPa, the volume of intra-aggregate pores still unchanges. While the inter-aggregates pores differentiate, some of the lager pores (>2000 nm) shrink into smaller pores (300 nm
    • [1]
      VILLAR M V, et al, Influence of temperature on the hydro-mechanical behaviour of a compacted bentonite[J]. Applied Clay Science, 2004, 26: 337 – 350.
      [2]
      ROMERO E, GENS A, LLORET A. Temperature effects on the hydraulic behaviour of an unsaturated clay[J]. Geotech Geolog Eng 2001, 19: 311 – 332.
      [3]
      CHARNG H Juang, ROBERT D Holtz. Fabric, pore size distribution, and permeability of sandy soils[J]. Journal of Geotechnical Engineering, 1986, 12 (9): 855 – 867.
      [4]
      PUSCH R. Mineral-water interactions and their influence on the physical behavior of highly compacted Na bentonite[J]. Canadian Geotechnical Journal, 1982, 19: 381 – 387.
      [5]
      CUI Y J, LOISEAU C, DELAGE P. Microstructure changes of a confined swelling soil due to suction controlled hydration[C]// Proceedings of the 3rd International Conference on Unsaturated Soils (UNSAT 2002). Brazil, 2002: 593 – 598.
      [6]
      叶为民, 黄 雨, 崔玉军, 等. 自由膨胀条件下高压密膨胀黏土微观结构随吸力变化特征 [J]. 岩石力学与工程学报, 2005, 24 (23): 4570 – 4575. (YE Wei-min, HUANG Yu, CUI Yun-jun, et al. Microstructural changing characteristics of densely compacted bentonite with suction under unconfined hydrating conditions[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24 (23): 4570 – 4575. (in Chinese))
      [7]
      LLORET A, VILLAR M V. Advances on the knowledge of the thermo-hydro-mechanical behaviour of heavily compacted ‘‘FEBEX’’ bentonite[J]. Physics and Chemistry of the Earth, 2007(32): 701 – 715.
      [8]
      SAIYOURI N, HICHER PY, TESSIER D. Microstructural analysis of highly compacted clay swelling[C]// Proc 2nd Int Conf on Unsaturated Soils Academic publishers. Beijing, 1998(1): 119 – 124.
      [9]
      CUI Y J, LOISEAU C. Water transfer through a confined heavily compacted swelling soil[C]// Proceedings of 1st World Forum of Chinese Scholars in Geotechnical Engineering. Shanghai, 2003: 1 – 18.
      [10]
      CHEN Bao, QIAN Li-xin, YE Wei-min, et al. Soil-water characteristic curves of Gaomiaozi bentonite[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25 (4): 788 – 793.
      [11]
      何 俊, 施建勇. 膨润土中饱和渗透系数的计算 [J]. 岩石力学与工程学报, 2007, 26 ( 增刊 2): 3920 – 3925. (HE Jun, SHI Jian-yong. Calculation of satureated permeability of bentonite[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26 (S2): 3920 – 3925. (in Chinese))
      [12]
      叶为民, 黄 伟, 陈 宝, 等. 双电层理论与高庙子膨润土的体变特征 [J]. 岩土力学, 2009, 30 (7): 1899 – 1903. (YE Wei-min, HUANG Wei, CHEN Bao, et al. Diffuse double layer theory and volume change behavior of densely compacted Gaomiaozi bentonite[J]. Rock and soil mechanics, 2009, 30 (7): 1899 – 1903. (in Chinese))
      [13]
      ALONSO E E. Gas migration through barriers[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25 (4): 693 – 708.
      [14]
      PHAM H Q, FREDLUND D G, BARBOUR S L. A study of hysteresis models for soil-water characteristic curves[J]. Canadian Geotechnical Journal, 2005, 42 (6): 1548 – 1568.
      [15]
      LI X S. Modelling of hysteresis response for arbitrary wetting/drying paths[J]. Computers and Geotechnics, 2005(32): 133 – 137.
      [16]
      NUTH M, LALOUI L. Advances in modeling hysteretic water retention curve in deformable soils[J]. Computers and Geotechnics, 2008(35): 835 – 844.
      [17]
      WEI C F, Dewoolkar M M. Formulation of capillary hysteresis with internal state variables[J]. Water Resources Research, 2006, 42.
      [18]
      CUI Y J, DELAGE P. Yielding and plastic behavior of an unsaturated compacted silt[J]. Geotechnique, 1996, 46 (2): 291 – 311.
      [19]
      叶为民, 唐益群, 崔玉军. 室内吸力量测与上海软土土水特征 [J]. 岩土工程学报, 2005, 27 (3): 347 – 349. (YE Wei-min, TANG Yi-qun, CUI Yun-jun. Measurement of soil suction in laboratory and soil-water characteristics of Shanghai soft soil[J]. Chinese Journal of Geotechnical Engineering, 2005, 27 (3): 347 – 349. (in Chinese))
      [20]
      TANG Anh-minh, CUI Yu-jun. Controlling suction by the vapour equilibrium technique at different temperatures and its application in determining the water retention properties of MX80 clay[J]. Can Geotech, 2005(42): 1 – 10.
    • Related Articles

      [1]ZHOU Fengxi, ZHU Shunwang, LIANG Yuwang, ZHAO Wencang. Exact analysis of soil slope stability by using variational limit equilibrium method[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(7): 1341-1346. DOI: 10.11779/CJGE20220360
      [2]ZHU Yan-peng, HOU Xi-nan, MA Xiang-xiang, YANG Kui-bin. Limit analysis of slope stability supported by framed prestressed anchor rods[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S1): 7-12. DOI: 10.11779/CJGE2021S1002
      [3]ZHANG Chao, MA Chang-kun, YANG Chun-he, CHEN Qing-lin, PAN Zhen-kai. Effects of particle diameter on shear strength of tailings and stability of tailings dams[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S1): 145-148. DOI: 10.11779/CJGE2019S1037
      [4]SHI Bu-tao, ZHANG Yun, ZHANG Wei. Strength reduction material point method for slope stability[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(9): 1678-1684. DOI: 10.11779/CJGE201609015
      [5]XU Fei, XU Wei-ya, LIU Zao-bao, LIU Kang. Slope stability evaluation based on PSO-PP[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(11): 1708-1713.
      [6]YIN Zong-ze, XU Bin. Slope stability of expansive soil under fissure influence[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(3): 454.
      [7]HU Houtian, WANG Anfu, LIU Yongjiang, ZHAO Xiaoyan. Stability of granite soil high slopes[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(6): 824-828.
      [8]LONG Xujian, HUANG Xiaoyan, ZHANG Chunyu, ZHOU Ji. Stiffness reduction and slope failure criterion in strength reduction finite element method[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(12): 1910-1914.
      [9]CHI Shichun, GUAN Lijun. Slope stability analysis by Lagrangian difference method based on shear strength reduction[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(1): 42-46.
      [10]LIAO Hongjian, HAN Bo, YIN Jianhua, CHI Shisheng. The long term stability of cut slope and determination of effective strength index of soils[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(5): 560-564.
    • Cited by

      Periodical cited type(26)

      1. 葛宏盛,刘丽萍,汪朝明,郑贞成. 玄武岩纤维改良华东地区红黏土的工程适用性分析. 河北地质大学学报. 2024(01): 78-85 .
      2. 柳耀阔,李孝波,赵扬,王天虎,席书衡. 降雨型滑坡水槽试验研究若干进展. 防灾科技学院学报. 2024(01): 16-25 .
      3. 王世平,韩杰,李庆楼. 基于红黏土边坡的生态混凝土护坡技术研究. 黑龙江交通科技. 2024(03): 1-4+9 .
      4. 杨辉鸿,张志卫. 干湿循环下红黏土裂隙发育及抗剪强度劣化规律研究. 土工基础. 2024(03): 512-515+534 .
      5. 杨俊芳,韦学英,郑伟泽. 棕丝加筋红黏土的裂隙特性研究. 中国建材科技. 2023(01): 118-122 .
      6. 曾铃,陈佳艳,刘杰,高乾丰,袁玉荣,匡波. 基于荧光示踪法的含裂隙带红黏土边坡渗流特性研究. 中国公路学报. 2023(03): 136-145 .
      7. 陈开圣,骆弟普,胡兴. 高掺量磷石膏稳定红黏土胀缩特性. 建筑科学与工程学报. 2023(02): 150-159 .
      8. 郭汉宇,李聪,张子豪,王佳俊. 降雨诱发不同类型土质滑坡研究综述. 土工基础. 2023(02): 253-259 .
      9. 梁超恒,丁启龙. 红黏土滑坡治理的实践与探索. 西部交通科技. 2023(01): 25-27+124 .
      10. 孟永东,张伟杰,蔡征龙,田斌,袁昌纬,田爽岑,董朝光. 滑坡体降雨入渗的高密度电法模型试验研究. 地球物理学进展. 2023(04): 1842-1852 .
      11. 周磊,易文,江伟健,金丽萍,杨为环. 降雨作用下微生物改良红黏土边坡稳定性分析. 中南林业科技大学学报. 2023(07): 179-188 .
      12. 张志伟. 再生沥青路面-粉煤灰地聚物作为可持续稳定路面材料. 武汉理工大学学报. 2022(02): 7-14 .
      13. 任意,江兴元,吴长虹,孟生勇,赵珍贤. 干湿循环下红黏土斜坡裂隙性和水土响应试验研究. 水利水电技术(中英文). 2022(04): 172-179 .
      14. 曹硕鹏,付宏渊,高乾丰,于光涛,曾铃. 降雨作用下裂隙红黏土边坡渗流特征与冲刷模式. 中国公路学报. 2022(05): 33-43 .
      15. 刘旭梅,杜强. 降雨条件下砂土流滑的离散元细观机理研究. 内蒙古工业大学学报(自然科学版). 2022(05): 458-467 .
      16. 彭镜豫,孟宝华. 双排桩在某红黏土及填方基坑中的应用. 土工基础. 2022(06): 812-815+842 .
      17. 薛凯喜,丁辰,康国芳,陈国房,周朝慧,王安礼,李向辉. 不同降雨工况下红黏土边坡持水响应规律与稳定性分析. 水力发电. 2021(03): 31-36+88 .
      18. 靳红华,王林峰,任青阳,张星星. 降雨循环条件下高切坡稳定性演化过程及预测方法. 土木与环境工程学报(中英文). 2021(04): 12-23 .
      19. 骆弟普,陈开圣,李强. 水玻璃改良磷石膏稳定土水稳性试验研究. 中国水运(下半月). 2021(10): 136-137 .
      20. 骆弟普,陈开圣,李强. 水玻璃改良磷石膏稳定土水稳性试验研究. 中国水运(下半月). 2021(20): 136-137 .
      21. 张东东,荣华. 降雨入渗条件下赣南红黏土边坡稳定性分析. 甘肃水利水电技术. 2020(01): 32-35 .
      22. 毋远召,马文礼,魏占玺,董顺德. 降雨及渗流条件下层状砂质板岩边坡变形破坏模式研究. 河北工业科技. 2020(04): 230-236 .
      23. 邓宇,孟宝华,黄泽军. 局部双排桩在贵州某红黏土深基坑支护工程中的应用. 产业科技创新. 2020(20): 76-77 .
      24. 邓宇,孟宝华,灌千元,曾智鹏. 间隔双排桩在贵州某红黏土深基坑及其加固中的应用. 土工基础. 2020(06): 639-643+647 .
      25. 史倩华,王文龙,郭明明,陈卓鑫,冯兰茜,赵满. 董志塬沟头溯源侵蚀过程及崩塌中孔隙水压力变化. 农业工程学报. 2019(18): 110-117 .
      26. 蒋波,喻永祥,何伟,郝社锋,王浩,王金. 连云港地区绿片岩夹层力学性质试验研究. 河南科学. 2019(12): 2010-2017 .

      Other cited types(32)

    Catalog

      WANG Ju

      1. On this Site
      2. On Google Scholar
      3. On PubMed
      Article views (1412) PDF downloads (1107) Cited by(58)
      Related

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return