• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LIU Xin-rong, YUAN Wen, FU Yan, WANG Zi-juan, MIAO Lou-li, XIE Wen-bo. Porosity evolution of sandstone dissolution under wetting and drying cycles[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(3): 527-532. DOI: 10.11779/CJGE201803017
Citation: LIU Xin-rong, YUAN Wen, FU Yan, WANG Zi-juan, MIAO Lou-li, XIE Wen-bo. Porosity evolution of sandstone dissolution under wetting and drying cycles[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(3): 527-532. DOI: 10.11779/CJGE201803017

Porosity evolution of sandstone dissolution under wetting and drying cycles

More Information
  • Received Date: November 30, 2016
  • Published Date: March 24, 2018
  • The deterioration mechanism of rock under wetting and drying cycles is complex. Taking sandstone as the research object, based on the ion concentration in immersion solution, the dissolution of sandstone minerals is quantitatively analyzed, and the evolution laws of sandstone porosity are obtained. Finally, the deterioration mechanism of sandstone under the effect of wetting and drying cycles is analyzed. The results show that the formation rate of Ca2+ is one order higher than that of K+, Na+ and SiO2, and the formation rate of Fe2+ is the lowest. After each cycle phase, the volume reduction of calcite is the most, followed by that of potash feldspar and soda feldspar, while the volume reduction of black mica and quartz is the smallest. After wetting and drying cycles, the micro porosity changes, which will lead to a significant reduction in compressive strength, and the porosity change rate is positively correlated with the deterioration degree in each stage. After erosion of wetting and drying cycles, various minerals are dissolved in sandstone, leading to the decrease of cements and the increase of porosity, producing a variety of voids and micro cracks, and ultimately reflected in the decrease of the strength, which is the main cause of deterioration of sandstone after wetting and drying cycles.
  • [1]
    徐则民, 黄润秋, 唐正光, 等. 硅酸盐矿物溶解动力学及其对滑坡研究的意义[J]. 岩石力学与工程学报, 2005, 24(9): 1479–1491. (XU Ze-min, HUANG Run-qiu, TANG Zheng-guang, et al. Kinetics of silicate mineral dissolution and its implications for landslide studies[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(9): 1479–1491. (in Chinese))
    [2]
    姜德义, 宋书一, 任 松, 等. 三轴应力作用下岩盐溶解速率影响因素分析[J]. 岩土力学, 2013, 34(4): 1025–1030. (JIANG De-yi, SONG Shu-yi, REN Song, et al. Analysis of factors influencing rock salt dissolution rate under triaxial stress effect[J]. Rock and Soil Mechanics, 2013, 34(4): 1025–1030. (in Chinese))
    [3]
    刘再华, DREYBRODT W, 李华举. 灰岩和白云岩溶解速率控制机理的比较[J]. 地球科学—中国地质大学学报, 2006, 31(3): 411–416. (LIU Zai-hua, DREYBRODT W, LI Hua-ju. Comparison of dissolution rate-determining mechanisms between limestone and dolomite[J]. Earth Science—Journal of China University of Geosciences, 2006, 31(3): 411–416. (in Chinese))
    [4]
    夏树屏, 高世扬, 刘志宏, 等. 盐类溶解动力学的数学模型和热力学函数[J]. 盐湖研究, 2013, 11(3): 9–17. (XIA Shu-ping, GAO Shi-yang, LIU Zhi-hong, et al. Mathematical dissolution kinetics model and thermodynamics function of salts[J]. Journal of Saltlake Research, 2013, 11(3): 9–17. (in Chinese))
    [5]
    汤艳春, 周 辉, 冯夏庭, 等. 单轴压缩条件下岩盐应力–溶解耦合效应的细观力学试验分析[J]. 岩石力学与工程学报, 2008, 27(2): 294–302. (TANG Yan-chun, ZHOU Hui, FENG Xia-ting, et al. Analysis of mesomechanical test of rock salt considering coupled stress-dissolving effects under uniaxial compression[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(2): 294–302. (in Chinese))
    [6]
    丁梧秀, 冯夏庭. 化学腐蚀下裂隙岩石的损伤效应及断裂准则研究[J]. 岩土工程学报, 2008, 31(6): 899–904. (DING Wu-xiu, FENG Xia-ting. Damage effect and fracture criterion of rock with multi-preexisting cracks under chemical erosion[J]. Chinese Journal of Geotechnical Engineering, 2008, 31(6): 899–904. (in Chinese))
    [7]
    ROTTINGA T S, LUQUOT L, CARRERA J, et al. Changes in porosity, permeability, water retention curve and reactive surface area during carbonate rock dissolution[J]. Chemical Geology, 2015, 403(18): 86–98.
    [8]
    CRITELLI T, MARINI L, SCHOTT J, et al. Dissolution rates of actinolite and chlorite from a whole-rock experimental study of metabasalt dissolution from 2≤pH≤12 at 25°C[J]. Chemical Geology, 2014(390): 100–108.
    [9]
    邓华锋, 李建林, 王孔伟, 等. 饱和-风干循环过程中砂岩次生孔隙率变化规律研究[J]. 岩土力学, 2012, 33(2): 483–488. (DENG Hua-feng, LI Jian-lin, WANG Kong-wei, et al. Research on secondary porosity changing law of sandstone under saturation-air dry cycles[J]. Rock and Soil Mechanics, 2012, 33(2): 483–488. (in Chinese))
    [10]
    邓华锋, 李建林, 朱 敏, 等. 饱水-风干循环作用下砂岩强度劣化规律试验研究[J]. 岩土力学, 2012, 33(11): 3306–3312. (DENG Hua-feng, LI Jian-lin, ZHU Min, et al. Experimental research on strength deterioration rules of sandstone under “saturation-air dry” circulation function[J]. Rock and Soil Mechanics, 2012, 33(11): 3306–3312. (in Chinese))
    [11]
    刘新荣, 傅 晏, 王永新, 等. (库)水–岩作用下砂岩抗剪强度劣化规律的试验研究[J]. 岩土工程学报, 2008, 30(9): 1298–1302. (LIU Xin-rong, FU Yan, WANG Yong-xin, et al. Deterioration rules of shear strength of sand rock underwater-rock interaction of reservoir[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(9): 1298–1302. (in Chinese))
    [12]
    刘新荣, 张 梁, 傅 晏. 酸性环境干湿循环对泥质砂岩力学特性影响的试验研究[J]. 岩土力学, 2014, 35(增刊2): 45–52. (LIU Xin-rong, ZHANG Liang, FU Yan. Experimental study of mechanical properties of argillaceous sandstone under wet and dry cycle in acid environment[J]. Rock and Soil Mechanics, 2014, 35(S2): 45–52. (in Chinese))
    [13]
    刘新荣, 李栋梁, 王 震, 等. 酸性干湿循作用对泥质砂岩强度特性劣化影响研究[J]. 岩石力学与工程学报, 2016, 35(8): 1543–1554. (LIU Xin-rong, LI Dong-liang, WANG Zhen, et al. The effect of dry/wet cycles with acidic wetting fluid on strength deterioration of shaly sandstone[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(8): 1543–1544. (in Chinese))
    [14]
    刘新荣, 李栋梁, 张 梁, 等. 干湿循环对泥质砂岩力学特性及其微细观结构影响研究[J]. 岩土工程学报, 2016, 38(7): 1291–1300. (LIU Xin-rong, LI Dong-liang, ZHANG Liang, et al. The effect of dry/wet cycles with acidic wetting fluid on strength deterioration of shaly sandstone[J]. Chinese Journal of Geotechnical Engineering, 2016, 35(8): 1543–1544. (in Chinese))
    [15]
    刘新荣, 袁 文, 傅 晏, 等. 化学溶液和干湿循环作用下砂岩抗剪强度劣化试验及化学热力学分析[J]. 岩石力学与工程学报, 2016, 35(12): 1543–1554. (LIU Xin-rong, YUAN Wen, FU Yan, et al. Shear strength deterioration tests of sandstone under the action of chemical solution and wetting/ drying analyzed by chemical thermodynamics[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(12): 1543–1554. (in Chinese))
    [16]
    冯夏庭, 丁梧秀, 崔 强, 等. 岩石破裂过程中的化学-应力耦合效应[M]. 北京:科学出版社, 2010. (FENG Xia-ting, DING Wu-xiu, CUI Qiang, et al. Coupled chemical-stress effect on rock fracturing process[M]. Beijing: Science Press, 2010. (in Chinese))
    [17]
    GB/T50266—2013 工程岩体试验方法标准[S]. 2013. (GB/T50266—2013 Standard for tests method of engineering rock masses[S]. 2013. (in Chinese))
    [18]
    刘俊吉, 周亚平, 李松林. 物理化学[M]. 北京: 高等教育科学出版社, 2012. (LIU Jun-ji, ZHOU Ya-ping, LI Song-ling. Physical chemistry[M]. Beijing: Higher Education Press, 2012. (in Chinese))
    [19]
    巫锡勇, 朱宝龙, 罗 健. 黑色岩层的风化过程及其热力学分析[M]. 北京:科学出版社, 2008. (WU Xi-yong, ZHU Bao-long, LUO Jian. Weathering process of black rock stratum and its thermodynamic analysis[M]. Beijing: Science Press, 2008. (in Chinese))
  • Cited by

    Periodical cited type(26)

    1. 刘新荣,罗新飏,郭雪岩,周小涵,王浩,许彬,郑颖人. 巫山段岸坡水岩劣化特征及危岩失稳破坏模式. 工程地质学报. 2025(01): 240-257 .
    2. 段继超,宗琦,高朋飞,汪海波,吕闹,王浩. 干湿动载耦合作用下石灰岩宏细观复合损伤模型研究. 中国公路学报. 2025(03): 264-277 .
    3. 马家宝,毕靖. 单侧干湿循环下不同粒径砂岩孔隙结构和能量演化研究. 土工基础. 2024(03): 490-495 .
    4. 程家林,张贵科,邓韶辉,黄习文,周伟,马刚. 干湿循环对不同粒径堆石颗粒破碎强度的影响研究. 岩土力学. 2024(S1): 95-105 .
    5. 李盛南,梁桥,刘新喜,张馨尤,肖俊,黄中华. 干湿循环作用下炭质泥岩溶蚀孔隙度的化学计量方法. 中国公路学报. 2023(02): 89-96 .
    6. 黄叶宁,邓华锋,李建林,冯云杰,王文东,齐豫. 水–岩作用下节理岩体剪切力学特性及本构模型. 岩石力学与工程学报. 2023(03): 545-557 .
    7. 张甘平,刘振宁,王鲁男,张洺溪. 酸性干湿循环作用下红砂岩物理力学性能劣化规律. 廊坊师范学院学报(自然科学版). 2023(01): 70-74 .
    8. 龙登武,杨根兰,李达朗,刘镐. 干湿循环对赤水嘉定群厚层砂岩的损伤研究. 中国水运(下半月). 2023(03): 86-88 .
    9. 王维,王娟. 港航工程基槽开挖与港池疏浚施工问题探讨. 中国水运. 2023(06): 88-90 .
    10. 骆祚森,朱作祥,苏卿,李建林,邓华锋,杨超. 基于平行黏结模型的水-岩作用下砂岩蠕变模拟及损伤机制研究. 岩土力学. 2023(08): 2445-2457 .
    11. 杨圣奇,荆晓娇. 盐水干湿循环后砂岩物理力学特性试验研究. 岩土工程学报. 2023(10): 2165-2171 . 本站查看
    12. 曾铃,邱健,匡波,肖源杰,刘杰,卞汉兵. 干湿循环作用下预崩解炭质泥岩强度特性及其劣化机制. 中南大学学报(自然科学版). 2023(09): 3635-3646 .
    13. 胡雷,张鹏,黄波林. 三峡库区典型岩溶岸坡危岩体失稳模式和长期稳定性分析. 中国地质灾害与防治学报. 2023(05): 64-73 .
    14. 赵凡,姚雪,谢振斌. 水岩作用对沈府君阙表层剥落影响机制分析. 西北大学学报(自然科学版). 2022(02): 213-223 .
    15. 李盛南,刘新喜,李玉,王玮玮,周炎明. 炭质泥岩渐进破坏过程的变形特性及损伤演化研究. 中国公路学报. 2022(04): 99-107 .
    16. 龙小爽,王杰,何平,郑红杰,陈康. 干湿循环对三峡库区岸坡砂岩力学特性的影响研究. 工程勘察. 2022(06): 38-43 .
    17. 杨烜宇,王闫超,孙志杰. 公路高陡边坡含软弱层灰岩的劣化特性研究. 公路. 2022(06): 316-324 .
    18. 张连吉,曾亚林,罗晓岚. 干湿循环作用下受荷炭质页岩损伤特性与能量特征研究. 公路工程. 2022(03): 166-171+185 .
    19. 王玮玮,刘新喜,李盛南,李玉. 干湿循环对炭质泥岩蠕变及损伤特性的影响. 湖南大学学报(自然科学版). 2022(09): 173-181 .
    20. 穆成林,李华东,裴向军,王超,王睿. 溶蚀岩体各向异性力学性质的试验研究. 西南交通大学学报. 2022(05): 1070-1076+1112 .
    21. 罗小峰,侯运炳,闫浩东,孙翔. 干湿循环作用下全尾砂固结体的损伤机理. 中国有色金属学报. 2021(12): 3730-3739 .
    22. 霍树义,金坎辉,杨涛,周晴晴,张薇,崔建军. 干湿循环作用下砂岩蠕变损伤及本构模型. 土木工程与管理学报. 2020(02): 163-169 .
    23. 宋勇军,张磊涛,任建喜,陈佳星,车永新,杨慧敏,毕冉. 基于核磁共振技术的弱胶结砂岩干湿循环损伤特性研究. 岩石力学与工程学报. 2019(04): 825-831 .
    24. 黄波林,殷跃平,张枝华,王健,秦臻,闫国强. 三峡工程库区岩溶岸坡消落带岩体劣化特征研究. 岩石力学与工程学报. 2019(09): 1786-1796 .
    25. 马登辉,姚华彦,崔强,程世磊. 水化学溶液对灰岩力学特性的影响分析. 中国科技论文. 2019(08): 846-851+861 .
    26. 何乐平,ZHONG Lin,胡启军,GU Yucheng,ZENG Junsen,TANG Wei. The Quantification of Micro-structural Damage of Weak Muddy Intercalation in Dry-wet Cycles Combining in-situ SEM and DIP. Journal of Wuhan University of Technology(Materials Science). 2019(06): 1396-1399 .

    Other cited types(44)

Catalog

    Article views (367) PDF downloads (297) Cited by(70)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return