• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
SONG Lin-hui, WANG Xing-ya, WU Hao-yu, ZHOU Ke-fa, MEI Guo-xiong. Permeation process of clay under different stresses[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(4): 755-761. DOI: 10.11779/CJGE202204019
Citation: SONG Lin-hui, WANG Xing-ya, WU Hao-yu, ZHOU Ke-fa, MEI Guo-xiong. Permeation process of clay under different stresses[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(4): 755-761. DOI: 10.11779/CJGE202204019

Permeation process of clay under different stresses

More Information
  • Received Date: June 14, 2021
  • Available Online: September 22, 2022
  • Permeability is one of the important engineering properties of clay. It is characterized by the permeability coefficient, and its mechanism lies in the permeability process of water in clay. In order to describe the permeation process of clay, the developed rigid wall consolidation infiltration device is used to carry out clay seepage tests under 9 stress conditions. The water transfer rate and flow rate at different positions of the clay are quantitatively analyzed by the fluorescence tracing technique. The results show that the water transfer rate on the same cross section of the sample varies widely, and the distribution is very uneven. The dominant channel is easy to appear in the seepage process, and the distribution of the dominant channel is random and irregular. Under the influences of hydraulic seepage consolidation, there are also differences in permeable rate and flow rate on different cross sections. The parametric value of the soil layer near the water body is the largest and shows a decreasing trend along the seepage direction. The permeable rate and flow rate of clay both increase with the increase of hydraulic gradient and decreases with the increase of consolidation pressure, but the hydraulic gradient is more significant than consolidation pressure in terms of influence degree.
  • [1]
    MESRI G. Mechanisms controlling the permeability of clays[J]. Clays and Clay Minerals, 1971, 19(3): 151–158. doi: 10.1346/CCMN.1971.0190303
    [2]
    NAGARAJ T S, PANDIAN N S, NARASHIMHA R P S R. Stress state-permeability relationships for fine-grained soils[J]. Géotechnique, 1993, 43(2): 333–336. doi: 10.1680/geot.1993.43.2.333
    [3]
    曾玲玲, 洪振舜, 陈福全. 压缩过程中重塑黏土渗透系数的变化规律[J]. 岩土力学, 2012, 33(5): 1286–1292. doi: 10.3969/j.issn.1000-7598.2012.05.002

    ZENG Ling-ling, HONG Zhen-shun, CHEN Fu-quan. A law of change in permeability coefficient during compression of remolded clays[J]. Rock and Soil Mechanics, 2012, 33(5): 1286–1292. (in Chinese) doi: 10.3969/j.issn.1000-7598.2012.05.002
    [4]
    梁健伟, 房营光. 极细颗粒黏土渗流特性试验研究[J]. 岩石力学与工程学报, 2010, 29(6): 1222–1230. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201006019.htm

    LIANG Jian-wei, FANG Ying-guang. Experimental study of seepage characteristics of tiny-particle clay[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(6): 1222–1230. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201006019.htm
    [5]
    宋林辉, 黄强, 闫迪, 等. 水力梯度对黏土渗透性影响的试验研究[J]. 岩土工程学报, 2018, 40(9): 1635–1641. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201809011.htm

    SONG Lin-hui, HUANG Qiang, YAN Di, et al. Experimental study on effect of hydraulic gradient on permeability of clay[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(9): 1635–1641. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201809011.htm
    [6]
    党发宁, 刘海伟, 王学武, 等. 基于有效孔隙比的黏性土渗透系数经验公式研究[J]. 岩石力学与工程学报, 2015, 34(9): 1909–1917. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201509022.htm

    DANG Fa-ning, LIU Hai-wei, WANG Xue-wu, et al. Empirical formulas of permeability of clay based on effective pore ratio[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(9): 1909–1917. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201509022.htm
    [7]
    RENSHAW C E, DADAKIS J S, BROWN S R. Measuring fracture apertures: a comparison of methods[J]. Geophysical Research Letters, 2000, 27(2): 289–292. doi: 10.1029/1999GL008384
    [8]
    周健, 姚志雄, 张刚. 砂土渗流过程的细观数值模拟[J]. 岩土工程学报, 2007, 29(7): 977–981. doi: 10.3321/j.issn:1000-4548.2007.07.004

    ZHOU Jian, YAO Zhi-xiong, ZHANG Gang. Mesomechanical simulation of seepage flow in sandy soil[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(7): 977–981. (in Chinese) doi: 10.3321/j.issn:1000-4548.2007.07.004
    [9]
    孙强, 刘盛东, 姜春露, 等. 砂岩地层渗流过程非饱和厚度变化的地电测试[J]. 岩土工程学报, 2013, 35(7): 1350–1354. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201307025.htm

    SUN Qiang, LIU Sheng-dong, JIANG Chun-lu, et al. Electric response tests on unsaturated layer thickness in course of seepage of sandstone[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(7): 1350–1354. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201307025.htm
    [10]
    程竹华, 张佳宝, 徐绍辉. 黄淮海平原三种土壤中优势流现象的试验研究[J]. 土壤学报, 1999, 36(2): 154–161. https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB199902001.htm

    CHENG Zhu-hua, ZHANG Jia-bao, XU Shao-hui. Experimental studies on preferential flow in three soils in hunag-Huai-Hai plain[J]. Acta Pedologica Sinica, 1999, 36(2): 154–161. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB199902001.htm
    [11]
    刘目兴, 杜文正. 山地土壤优先流路径的染色示踪研究[J]. 土壤学报, 2013, 50(5): 871–880. https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB201305003.htm

    LIU Mu-xing, DU Wen-zheng. To investigate soil preferential flow paths in mountain area using dye tracer[J]. Acta Pedologica Sinica, 2013, 50(5): 871–880. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB201305003.htm
    [12]
    BAI B, XU T, GUO Z G. An experimental and theoretical study of the seepage migration of suspended particles with different sizes[J]. Hydrogeology Journal, 2016, 24(8): 2063–2078. doi: 10.1007/s10040-016-1450-7
    [13]
    张文杰, 严宏罡, 孙铖. 城市生活垃圾中优先流规律的穿透试验研究[J]. 岩土工程学报, 2018, 40(7): 1316–1321. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201807024.htm

    ZHANG Wen-jie, YAN Hong-gang, SUN Cheng. Breakthrough tests on preferential flow in municipal solid waste[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(7): 1316–1321. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201807024.htm
    [14]
    BAI B, XU T, LI H W. The semi-analytical solution of particle transport in porous media induced by seepage[J]. Fresenius Environmental Bulletin, 2017, 26(10): 6286–6294.
  • Related Articles

    [1]LIU Yadong, LIU Xian, LI Xueyou, YANG Zhiyong. Adaptive reliability analysis of spatially variable soil slopes using strength reduction sampling and Gaussian process regression[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(5): 978-987. DOI: 10.11779/CJGE20230065
    [2]WANG Yuke, FENG Shuang, ZHONG Yanhui, ZHANG Bei. A data-driven model for predicting shear strength indexes of normally consolidated soils[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S2): 183-188. DOI: 10.11779/CJGE2023S20025
    [3]MA Xingyu, WANG Lanmin, MA Wenguo, CHAI Shaofeng, LAI Yuru. Characteristics of dynamic shear strength of Xiji loess under different design intensities[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S2): 153-158. DOI: 10.11779/CJGE2023S20020
    [4]ZHAO Yu-xin, LIU Yan, LI Xu, LUO Ya-sheng. Comparative analysis and parameter determination method of shear strength models for unsaturated clayey soils[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S1): 126-131. DOI: 10.11779/CJGE2022S1023
    [5]ZHU Yan-peng, MA Tao, YANG Xiao-hui, YANG Kui-bin, WANG Hai-ming. Shear strength tests and regression analysis of red sandstone-improved soils based on orthogonal design[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S1): 87-92. DOI: 10.11779/CJGE2018S1014
    [6]TANG Jin-song, LIU Song-yu, TONG Li-yuan, SHEN Cai-hua. In-situ direct shear tests on shear strength indices of pebble and gravelly soil[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(zk1): 167-171. DOI: 10.11779/CJGE2015S1032
    [7]CHEN Li-hong. Correlated and uncorrelated linear regression statistical methods for probabilistic characteristics of shear strength[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(8): 1397-1402.
    [8]GONG Xiao-nan. Some problems concerning shear strength of soil in soft clay ground[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(10): 1596-1600.
    [9]YAN Shu-wang, FENG Xiao-wei, HOU Jin-fang, LI Wei. Deduction and application of strength parameters of soft clay by use of vane strength[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(12): 1805-1810.
    [10]Li Qingqi. Regression analysis and 3 D fitting of initial stress[J]. Chinese Journal of Geotechnical Engineering, 1998, 20(5): 71-74.
  • Cited by

    Periodical cited type(7)

    1. 张明,魏凯祥,年宾,姜福兴,王昆,朱海虎,胡浩. 深井冲击煤层充填工作面区段煤柱宽度研究. 岩石力学与工程学报. 2025(02): 316-330 .
    2. 贺海鸿,张宁,王冰,王常彬,曹安业. 深部复杂覆岩结构煤层开采冲击地压致灾层位判识研究. 煤炭技术. 2024(05): 56-59 .
    3. 崔峰,张随林,刘旭东,来兴平,姬松涛,冯攀飞,贾冲,陆长亮,王昊. 急倾斜巨厚煤层复杂空间结构区微震时空演化规律及诱冲机理. 煤炭学报. 2024(04): 1786-1803 .
    4. 张广超,尹茂胜,周广磊,陶广哲,张照允,闫宪洋,李振国,吕凯. 厚硬岩层下板结构破断应力-能量场积聚演化规律. 中国矿业大学学报. 2024(04): 647-663 .
    5. 夏永学,张晨阳,杜涛涛,周金龙,孙如达,陆闯,潘俊锋. 磨砂射流轴向切顶压裂工艺研发及应用. 煤炭学报. 2024(S1): 36-44 .
    6. 曹安业,窦林名,白贤栖,刘耀琪,杨科,李家卓,王常彬. 我国煤矿矿震发生机理及治理现状与难题. 煤炭学报. 2023(05): 1894-1918 .
    7. 白贤栖,曹安业,刘耀琪,王常彬,杨旭,赵迎春,杨耀. 基于震源机制解析的巨厚覆岩矿震破裂机制. 煤炭学报. 2023(11): 4024-4035 .

    Other cited types(2)

Catalog

    Article views (215) PDF downloads (374) Cited by(9)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return