Citation: | LIU Yadong, LIU Xian, LI Xueyou, YANG Zhiyong. Adaptive reliability analysis of spatially variable soil slopes using strength reduction sampling and Gaussian process regression[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(5): 978-987. DOI: 10.11779/CJGE20230065 |
[1] |
LIU L L, ZHANG S H, CHENG Y M, et al. Advanced reliability analysis of slopes in spatially variable soils using multivariate adaptive regression splines[J]. Geoscience Frontiers, 2019, 10(2): 671-682. doi: 10.1016/j.gsf.2018.03.013
|
[2] |
李典庆, 蒋水华, 周创兵, 等. 考虑参数空间变异性的边坡可靠度分析非侵入式随机有限元法[J]. 岩土工程学报, 2013, 35(8): 1413-1422. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201308008.htm
LI Dianqing, JIANG Shuihua, ZHOU Chuangbing, et al. Reliability analysis of slopes considering spatial variability of soil parameters using non-intrusive stochastic finite element method[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(8): 1413-1422. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201308008.htm
|
[3] |
JIANG S H, LI D Q, CAO Z J, et al. Efficient system reliability analysis of slope stability in spatially variable soils using Monte Carlo simulation[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2015, 141(2): 4014096. doi: 10.1061/(ASCE)GT.1943-5606.0001227
|
[4] |
ZHU B, HIRAISHI T, PEI H F, et al. Efficient reliability analysis of slopes integrating the random field method and a Gaussian process regression-based surrogate model[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2021, 45(4): 478-501. doi: 10.1002/nag.3169
|
[5] |
姬建, 姜振, 殷鑫, 等. 边坡随机场数字图像特征CNN深度学习及可靠度分析[J]. 岩土工程学报, 2022, 44(8): 1463-1473. doi: 10.11779/CJGE202208011
JI Jian, JIANG Zhen, YIN Xin, et al. Slope reliability analysis based on deep learning of digital images of random fields using CNN[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(8): 1463-1473. (in Chinese) doi: 10.11779/CJGE202208011
|
[6] |
张天龙, 曾鹏, 李天斌, 等. 基于主动学习径向基函数的边坡系统可靠度分析[J]. 岩土力学, 2020, 41(9): 3098-3108. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202009028.htm
ZHANG Tianlong, ZENG Peng, LI Tianbin, et al. System reliability analyses of slopes based on active-learning radial basis function[J]. Rock and Soil Mechanics, 2020, 41(9): 3098-3108. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202009028.htm
|
[7] |
ECHARD B, GAYTON N, LEMAIRE M. AK-MCS: an active learning reliability method combining Kriging and Monte Carlo Simulation[J]. Structural Safety, 2011, 33(2): 145-154. doi: 10.1016/j.strusafe.2011.01.002
|
[8] |
罗正东, 董辉, 陈铖, 等. 基于克里金模型的边坡稳定可靠度分析方法[J]. 岩土力学, 2015, 36(增刊1): 439-444. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2015S1076.htm
LUO Zhengdong, DONG Hui, CHEN Cheng, et al. An analytic method for slope stability reliability based on Kriging model[J]. Rock and Soil Mechanics, 2015, 36(S1): 439-444. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2015S1076.htm
|
[9] |
DUNCAN J M. State of the art: limit equilibrium and finite-element analysis of slopes[J]. Journal of Geotechnical Engineering, 1996, 122(7): 577-596. doi: 10.1061/(ASCE)0733-9410(1996)122:7(577)
|
[10] |
LI D Q, JIANG S H, CAO Z J, et al. A multiple response-surface method for slope reliability analysis considering spatial variability of soil properties[J]. Engineering Geology, 2015, 187: 60-72. doi: 10.1016/j.enggeo.2014.12.003
|
[11] |
ANG A H S, TANG W H. Probability Concepts in Engineering: Emphasis on Applications in Civil & Environmental Engineering[M]. New York: Wiley, 2007
|
[12] |
LI D Q, ZHENG D, CAO Z J, et al. Response surface methods for slope reliability analysis: review and comparison[J]. Engineering Geology, 2016, 203: 3-14. doi: 10.1016/j.enggeo.2015.09.003
|
[13] |
PAL M, DESWAL S. Modelling pile capacity using Gaussian process regression[J]. Computers and Geotechnics, 2010, 37(7-8): 942-947. doi: 10.1016/j.compgeo.2010.07.012
|
[14] |
KANG F, HAN S X, SALGADO R, et al. System probabilistic stability analysis of soil slopes using Gaussian process regression with Latin hypercube sampling[J]. Computers and Geotechnics, 2015, 63: 13-25. doi: 10.1016/j.compgeo.2014.08.010
|
[15] |
LI M Y, WANG G, QIAN L, et al. ASS-GPR: adaptive sequential sampling method based on Gaussian process regression for reliability analysis of complex geotechnical engineering[J]. International Journal of Geomechanics, 2021, 21(10): 4021192. doi: 10.1061/(ASCE)GM.1943-5622.0002161
|
[16] |
苏国韶, 宋咏春, 燕柳斌. 高斯过程机器学习在边坡稳定性评价中的应用[J]. 岩土力学, 2009, 30(3): 675-679, 687. doi: 10.3969/j.issn.1000-7598.2009.03.018
SU Guoshao, SONG Yongchun, YAN Liubin. Application of Gaussian process machine learning to slope stability evaluation[J]. Rock and Soil Mechanics, 2009, 30(3): 675-679, 687. (in Chinese) doi: 10.3969/j.issn.1000-7598.2009.03.018
|
[17] |
RASMUSSEN C E, WILLIAMS C K I. Gaussian Processes for Machine Learning[M]. Cambridge: MIT Press, 2006.
|
[18] |
ASLAN N. Application of response surface methodology and central composite rotatable design for modeling and optimization of a multi-gravity separator for chromite concentration[J]. Powder Technology, 2008, 185(1): 80-86. doi: 10.1016/j.powtec.2007.10.002
|
[19] |
PAN Q J, DIAS D. An efficient reliability method combining adaptive Support Vector Machine and Monte Carlo Simulation[J]. Structural Safety, 2017, 67: 85-95. doi: 10.1016/j.strusafe.2017.04.006
|
[20] |
LIU Y D, YANG Z Y, LI X Y. Adaptive ensemble learning of radial basis functions for efficient geotechnical reliability analysis[J]. Computers and Geotechnics, 2022, 146: 104753. doi: 10.1016/j.compgeo.2022.104753
|
[21] |
CHO S E. Probabilistic assessment of slope stability that considers the spatial variability of soil properties[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2010, 136(7): 975-984. doi: 10.1061/(ASCE)GT.1943-5606.0000309
|
[22] |
LIU L L, DENG Z P, ZHANG S H, et al. Simplified framework for system reliability analysis of slopes in spatially variable soils[J]. Engineering Geology, 2018, 239: 330-343. doi: 10.1016/j.enggeo.2018.04.009
|
[23] |
WANG B, LIU L L, LI Y H, et al. Reliability analysis of slopes considering spatial variability of soil properties based on efficiently identified representative slip surfaces[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2020, 12(3): 642-655. doi: 10.1016/j.jrmge.2019.12.003
|
[24] |
蒋水华, 李典庆, 曹子君, 等. 考虑参数空间变异性的边坡系统可靠度分析[J]. 应用基础与工程科学学报, 2014, 22(5): 841-855. https://www.cnki.com.cn/Article/CJFDTOTAL-YJGX202104013.htm
JIANG Shuihua, LI Dianqing, CAO Zijun, et al. System reliability analysis of slopes considering spatial variability of soil properties[J]. Journal of Basic Science and Engineering, 2014, 22(5): 841-855. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YJGX202104013.htm
|
[25] |
DENG Z P, PAN M, NIU J T, et al. Slope reliability analysis in spatially variable soils using sliced inverse regression-based multivariate adaptive regression spline[J]. Bulletin of Engineering Geology and the Environment, 2021, 80(9): 7213-7226. doi: 10.1007/s10064-021-02353-9
|
[1] | LI Hang-zhou, XIONG Guang-dong, GUO Tong, LIAO Hong-jian, PU Ming, Han Bo. Binary-medium model for loess considering unified strength theory[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S1): 53-57. DOI: 10.11779/CJGE2021S1010 |
[2] | GAO Jiang-ping, LIU Wen-zhi, YANG Ji-qiang. Formulas for bearing capacity of soft soil foundations with hard crust based on three-shear stress unified strength theory[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(12): 2331-2337. DOI: 10.11779/CJGE201912019 |
[3] | ZHANG Chang-guang, YAN Qing, WU Li-zhou, CAO Xue-ye, ZHANG Cheng-lin. Unified solution of Meyerhof’s ultimate bearing capacity for strip foundation resting on unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(2): 252-261. DOI: 10.11779/CJGE201802005 |
[4] | ZHANG Chang-guang, ZHAO Jun-hai, ZHANG Qing-he. Convergence - confinement analysis of deep circular rock tunnels based on unified strength theory[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(1): 110-114. |
[5] | Unified solution of shear strength for unsaturated soil under plane strain condition and its application[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(1). |
[6] | ZHOU Aiqi. Study on differences between ultimate bearing capacity on natural foundations and on pile tips in layered soil strata[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(4): 608-611. |
[7] | FAN Wen, SHENG Zhujiang, YU Maohong. Upper-bound limit analysis of earth pressure based on unified strength theory[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(10): 1147-1153. |
[8] | Researches on behaviour of composite foundation with single granular column based on unified twin shear strength theory[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(6): 707-711. |
[9] | XIE Qundan, HE Jie, LIU Jie, OUYANG Jianxiang. Unified twin shear strength theory for calculation of earth pressure[J]. Chinese Journal of Geotechnical Engineering, 2003, 25(3): 343-345. |
[10] | Yu Maohong. Unified Strength Theory for Geomaterials and lts Applications[J]. Chinese Journal of Geotechnical Engineering, 1994, 16(2): 1-10. |
1. |
章巍,储著宇,陈学奇,俞刚,张志帅,韩勃. 基于p-y曲线和实体有限元法的大直径单桩水平受荷性状研究. 水利水电技术(中英文). 2024(12): 193-202 .
![]() |