• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LIU Yadong, LIU Xian, LI Xueyou, YANG Zhiyong. Adaptive reliability analysis of spatially variable soil slopes using strength reduction sampling and Gaussian process regression[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(5): 978-987. DOI: 10.11779/CJGE20230065
Citation: LIU Yadong, LIU Xian, LI Xueyou, YANG Zhiyong. Adaptive reliability analysis of spatially variable soil slopes using strength reduction sampling and Gaussian process regression[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(5): 978-987. DOI: 10.11779/CJGE20230065

Adaptive reliability analysis of spatially variable soil slopes using strength reduction sampling and Gaussian process regression

More Information
  • Received Date: January 29, 2023
  • Available Online: May 14, 2024
  • Spatial variability of soil parameters has significant impact on slope stability. The critical problem for the slope reliability analysis considering the spatial variability is the dramatic computational demand. Based on the strength reduction sampling (SRS) and Gaussian process regression (GPR), an adaptive reliability analysis method (SRS-GPR) for soil slopes considering the spatial variability is proposed. Firstly, the spatially variable soil strength parameters are discretized into high-dimensional random variables by the Karhunen-Loève expansion method. Then the critical sample points are generated according to the SRS. Next, the nonlinear relationship between the random fields of soil parameters and the safety factor of slopes is established by the GPR. With the active learning strategy, the best training sample points can be automatically identified, so the GPR model can be sequentially updated. Subsequently, the trained GPR model and Monte Carlo simulation are adopted to perform slope reliability analysis. Finally, the accuracy, efficiency, robustness and applicability of the proposed method are testified by two examples. The results show that the proposed method can effectively identify the best training sample points near the limit state surface, and the prediction accuracy of the updated GPR model in this region is gradually improved. Moreover, this method can be directly applied in the original high-dimensional parameter space with marginal impact of dimensionality of random variables, and a small number of evaluations of the slope stability model are required, which indicates a significant advantage in terms of the computational efficiency.
  • [1]
    LIU L L, ZHANG S H, CHENG Y M, et al. Advanced reliability analysis of slopes in spatially variable soils using multivariate adaptive regression splines[J]. Geoscience Frontiers, 2019, 10(2): 671-682. doi: 10.1016/j.gsf.2018.03.013
    [2]
    李典庆, 蒋水华, 周创兵, 等. 考虑参数空间变异性的边坡可靠度分析非侵入式随机有限元法[J]. 岩土工程学报, 2013, 35(8): 1413-1422. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201308008.htm

    LI Dianqing, JIANG Shuihua, ZHOU Chuangbing, et al. Reliability analysis of slopes considering spatial variability of soil parameters using non-intrusive stochastic finite element method[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(8): 1413-1422. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201308008.htm
    [3]
    JIANG S H, LI D Q, CAO Z J, et al. Efficient system reliability analysis of slope stability in spatially variable soils using Monte Carlo simulation[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2015, 141(2): 4014096. doi: 10.1061/(ASCE)GT.1943-5606.0001227
    [4]
    ZHU B, HIRAISHI T, PEI H F, et al. Efficient reliability analysis of slopes integrating the random field method and a Gaussian process regression-based surrogate model[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2021, 45(4): 478-501. doi: 10.1002/nag.3169
    [5]
    姬建, 姜振, 殷鑫, 等. 边坡随机场数字图像特征CNN深度学习及可靠度分析[J]. 岩土工程学报, 2022, 44(8): 1463-1473. doi: 10.11779/CJGE202208011

    JI Jian, JIANG Zhen, YIN Xin, et al. Slope reliability analysis based on deep learning of digital images of random fields using CNN[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(8): 1463-1473. (in Chinese) doi: 10.11779/CJGE202208011
    [6]
    张天龙, 曾鹏, 李天斌, 等. 基于主动学习径向基函数的边坡系统可靠度分析[J]. 岩土力学, 2020, 41(9): 3098-3108. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202009028.htm

    ZHANG Tianlong, ZENG Peng, LI Tianbin, et al. System reliability analyses of slopes based on active-learning radial basis function[J]. Rock and Soil Mechanics, 2020, 41(9): 3098-3108. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202009028.htm
    [7]
    ECHARD B, GAYTON N, LEMAIRE M. AK-MCS: an active learning reliability method combining Kriging and Monte Carlo Simulation[J]. Structural Safety, 2011, 33(2): 145-154. doi: 10.1016/j.strusafe.2011.01.002
    [8]
    罗正东, 董辉, 陈铖, 等. 基于克里金模型的边坡稳定可靠度分析方法[J]. 岩土力学, 2015, 36(增刊1): 439-444. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2015S1076.htm

    LUO Zhengdong, DONG Hui, CHEN Cheng, et al. An analytic method for slope stability reliability based on Kriging model[J]. Rock and Soil Mechanics, 2015, 36(S1): 439-444. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2015S1076.htm
    [9]
    DUNCAN J M. State of the art: limit equilibrium and finite-element analysis of slopes[J]. Journal of Geotechnical Engineering, 1996, 122(7): 577-596. doi: 10.1061/(ASCE)0733-9410(1996)122:7(577)
    [10]
    LI D Q, JIANG S H, CAO Z J, et al. A multiple response-surface method for slope reliability analysis considering spatial variability of soil properties[J]. Engineering Geology, 2015, 187: 60-72. doi: 10.1016/j.enggeo.2014.12.003
    [11]
    ANG A H S, TANG W H. Probability Concepts in Engineering: Emphasis on Applications in Civil & Environmental Engineering[M]. New York: Wiley, 2007
    [12]
    LI D Q, ZHENG D, CAO Z J, et al. Response surface methods for slope reliability analysis: review and comparison[J]. Engineering Geology, 2016, 203: 3-14. doi: 10.1016/j.enggeo.2015.09.003
    [13]
    PAL M, DESWAL S. Modelling pile capacity using Gaussian process regression[J]. Computers and Geotechnics, 2010, 37(7-8): 942-947. doi: 10.1016/j.compgeo.2010.07.012
    [14]
    KANG F, HAN S X, SALGADO R, et al. System probabilistic stability analysis of soil slopes using Gaussian process regression with Latin hypercube sampling[J]. Computers and Geotechnics, 2015, 63: 13-25. doi: 10.1016/j.compgeo.2014.08.010
    [15]
    LI M Y, WANG G, QIAN L, et al. ASS-GPR: adaptive sequential sampling method based on Gaussian process regression for reliability analysis of complex geotechnical engineering[J]. International Journal of Geomechanics, 2021, 21(10): 4021192. doi: 10.1061/(ASCE)GM.1943-5622.0002161
    [16]
    苏国韶, 宋咏春, 燕柳斌. 高斯过程机器学习在边坡稳定性评价中的应用[J]. 岩土力学, 2009, 30(3): 675-679, 687. doi: 10.3969/j.issn.1000-7598.2009.03.018

    SU Guoshao, SONG Yongchun, YAN Liubin. Application of Gaussian process machine learning to slope stability evaluation[J]. Rock and Soil Mechanics, 2009, 30(3): 675-679, 687. (in Chinese) doi: 10.3969/j.issn.1000-7598.2009.03.018
    [17]
    RASMUSSEN C E, WILLIAMS C K I. Gaussian Processes for Machine Learning[M]. Cambridge: MIT Press, 2006.
    [18]
    ASLAN N. Application of response surface methodology and central composite rotatable design for modeling and optimization of a multi-gravity separator for chromite concentration[J]. Powder Technology, 2008, 185(1): 80-86. doi: 10.1016/j.powtec.2007.10.002
    [19]
    PAN Q J, DIAS D. An efficient reliability method combining adaptive Support Vector Machine and Monte Carlo Simulation[J]. Structural Safety, 2017, 67: 85-95. doi: 10.1016/j.strusafe.2017.04.006
    [20]
    LIU Y D, YANG Z Y, LI X Y. Adaptive ensemble learning of radial basis functions for efficient geotechnical reliability analysis[J]. Computers and Geotechnics, 2022, 146: 104753. doi: 10.1016/j.compgeo.2022.104753
    [21]
    CHO S E. Probabilistic assessment of slope stability that considers the spatial variability of soil properties[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2010, 136(7): 975-984. doi: 10.1061/(ASCE)GT.1943-5606.0000309
    [22]
    LIU L L, DENG Z P, ZHANG S H, et al. Simplified framework for system reliability analysis of slopes in spatially variable soils[J]. Engineering Geology, 2018, 239: 330-343. doi: 10.1016/j.enggeo.2018.04.009
    [23]
    WANG B, LIU L L, LI Y H, et al. Reliability analysis of slopes considering spatial variability of soil properties based on efficiently identified representative slip surfaces[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2020, 12(3): 642-655. doi: 10.1016/j.jrmge.2019.12.003
    [24]
    蒋水华, 李典庆, 曹子君, 等. 考虑参数空间变异性的边坡系统可靠度分析[J]. 应用基础与工程科学学报, 2014, 22(5): 841-855. https://www.cnki.com.cn/Article/CJFDTOTAL-YJGX202104013.htm

    JIANG Shuihua, LI Dianqing, CAO Zijun, et al. System reliability analysis of slopes considering spatial variability of soil properties[J]. Journal of Basic Science and Engineering, 2014, 22(5): 841-855. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YJGX202104013.htm
    [25]
    DENG Z P, PAN M, NIU J T, et al. Slope reliability analysis in spatially variable soils using sliced inverse regression-based multivariate adaptive regression spline[J]. Bulletin of Engineering Geology and the Environment, 2021, 80(9): 7213-7226. doi: 10.1007/s10064-021-02353-9
  • Related Articles

    [1]LI Hang-zhou, XIONG Guang-dong, GUO Tong, LIAO Hong-jian, PU Ming, Han Bo. Binary-medium model for loess considering unified strength theory[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S1): 53-57. DOI: 10.11779/CJGE2021S1010
    [2]GAO Jiang-ping, LIU Wen-zhi, YANG Ji-qiang. Formulas for bearing capacity of soft soil foundations with hard crust based on three-shear stress unified strength theory[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(12): 2331-2337. DOI: 10.11779/CJGE201912019
    [3]ZHANG Chang-guang, YAN Qing, WU Li-zhou, CAO Xue-ye, ZHANG Cheng-lin. Unified solution of Meyerhof’s ultimate bearing capacity for strip foundation resting on unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(2): 252-261. DOI: 10.11779/CJGE201802005
    [4]ZHANG Chang-guang, ZHAO Jun-hai, ZHANG Qing-he. Convergence - confinement analysis of deep circular rock tunnels based on unified strength theory[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(1): 110-114.
    [5]Unified solution of shear strength for unsaturated soil under plane strain condition and its application[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(1).
    [6]ZHOU Aiqi. Study on differences between ultimate bearing capacity on natural foundations and on pile tips in layered soil strata[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(4): 608-611.
    [7]FAN Wen, SHENG Zhujiang, YU Maohong. Upper-bound limit analysis of earth pressure based on unified strength theory[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(10): 1147-1153.
    [8]Researches on behaviour of composite foundation with single granular column based on unified twin shear strength theory[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(6): 707-711.
    [9]XIE Qundan, HE Jie, LIU Jie, OUYANG Jianxiang. Unified twin shear strength theory for calculation of earth pressure[J]. Chinese Journal of Geotechnical Engineering, 2003, 25(3): 343-345.
    [10]Yu Maohong. Unified Strength Theory for Geomaterials and lts Applications[J]. Chinese Journal of Geotechnical Engineering, 1994, 16(2): 1-10.
  • Cited by

    Periodical cited type(1)

    1. 章巍,储著宇,陈学奇,俞刚,张志帅,韩勃. 基于p-y曲线和实体有限元法的大直径单桩水平受荷性状研究. 水利水电技术(中英文). 2024(12): 193-202 .

    Other cited types(2)

Catalog

    Article views (307) PDF downloads (75) Cited by(3)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return