• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LUO Ming-xing, ZHANG Ji-ru, LIU Xiao-xuan. Dilatancy behaviors and equation of calcareous sand considering stress path and particle breakage[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(8): 1453-1462. DOI: 10.11779/CJGE202108010
Citation: LUO Ming-xing, ZHANG Ji-ru, LIU Xiao-xuan. Dilatancy behaviors and equation of calcareous sand considering stress path and particle breakage[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(8): 1453-1462. DOI: 10.11779/CJGE202108010

Dilatancy behaviors and equation of calcareous sand considering stress path and particle breakage

More Information
  • Received Date: December 22, 2020
  • Available Online: December 02, 2022
  • The stress path and particle breakage have an impact on the dilatancy of calcareous sand. A series of drained triaxial compression tests with different stress paths and confining pressures are carried out to investigate the dilatancy of calcareous sand. The results show that the stress path and particle breakage have important effects on the dilatancy of calcareous sand. The relationship between the dilatancy ratio and the stress ratio of calcareous sand under different stress paths is significantly different. Under the same stress ratio, the dilatancy ratio in the constant confining pressure tests is the maximum, and that in the constant axial stress tests is the minimum. The dilatancy ratio in the constant average principal stress tests is between above two tests. The dilatancy ratio corresponding to the peak stress ratio decreases with an increase of the peak stress ratio, which follows a linear relationship, and increases with an increase of the relative breakage index, which is approximated by a power function. These relationships are not affected by the stress paths. The relation between the dilatancy ratio and the parameters related to stress ratio is linear under the condition of ignoring strain softening stage, and its slope is related to the stress path and the consolidation pressure. Based on the test results, a dilatancy equation related to the stress path and particle breakage is proposed and verified. It is shown that the dilatancy equation has better adaptability to different types of granular soils.
  • [1]
    ROSCOE K H, SCHOFIELD A N, WROTH C P. On the yielding of soils[J]. Géotechnique, 1958, 8(1): 22-53. doi: 10.1680/geot.1958.8.1.22
    [2]
    ROWE P W. The stress-dilatancy relation for static equilibrium of an assembly of particles in contact[J]. Proceedings of the Royal Society of London, 1962, 269(A): 500-527.
    [3]
    LI X S, DAFALIAS Y F. Dilatancy for cohesionless soils[J]. Géotechnique, 2000, 50(4): 449-460. doi: 10.1680/geot.2000.50.4.449
    [4]
    姚仰平, 刘林, 罗汀. 砂土的UH模型[J]. 岩土工程学报, 2016, 38(12): 2147-2153. doi: 10.11779/CJGE201612002

    YAO Yang-ping, LIU Lin, LUO Ting. UH model for sands[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(12): 2147-2153. (in Chinese) doi: 10.11779/CJGE201612002
    [5]
    张丙印, 贾延安, 张宗亮. 堆石体修正Rowe剪胀方程与南水模型[J]. 岩土工程学报, 2007, 29(10): 1443-1448. doi: 10.3321/j.issn:1000-4548.2007.10.002

    ZHANG Bing-yin, JIA Yan-an, ZHANG Zong-liang. Modified Rowe’s dilatancy law of rockfill and Shen Zhujiang’s double yield surfaces elastoplastic model[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(10): 1443-1448. (in Chinese) doi: 10.3321/j.issn:1000-4548.2007.10.002
    [6]
    沈珠江. 土体应力应变分析中的一种新模型[C]//第五届土力学及基础工程学术讨论会论文集. 北京: 中国建筑工业出版社, 1990: 101-105.

    SHEN Zhu-jiang. A new constitutive model for soils[C]//Proceedings of the 5th Chinese Conference on Soil Mechanics and Foundation Engineering. Beijing: China Architecture & Building Press, 1990: 101-105. (in Chinese)
    [7]
    DAOUADJI A, HICHER P Y, RAHMA A. An elastoplastic model for granular materials taking into account grain breakage[J]. European Journal of Mechanics, 2001, 20(1): 113-137. doi: 10.1016/S0997-7538(00)01130-X
    [8]
    胡波. 三轴条件下钙质砂颗粒破碎力学性质与本构模型研究[D]. 武汉: 中国科学院武汉岩土力学研究所, 2008.

    HU Bo. Research on the Particle Breakage Mechanical Characteristics and Constitutive Model of Calcareous Sand Under Triaxial Conditions[D]. Wuhan: Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, 2008. (in Chinese)
    [9]
    HARDIN B O. Crushing of soil particles[J]. Journal of Geotechnical Engineering, 1985, 111(10): 1177-1192. doi: 10.1061/(ASCE)0733-9410(1985)111:10(1177)
    [10]
    吴京平, 褚瑶, 楼志刚. 颗粒破碎对钙质砂变形及强度特性的影响[J]. 岩土工程学报, 1997, 19(5): 49-55. doi: 10.3321/j.issn:1000-4548.1997.05.008

    WU Jing-ping, CHU Yao, LOU Zhi-gang. Influence of particle breakage on deformation and strength properties of calcareous sands[J]. Chinese Journal of Geotechnical Engineering, 1997, 19(5): 49-55. (in Chinese) doi: 10.3321/j.issn:1000-4548.1997.05.008
    [11]
    蔡正银, 侯贺营, 张晋勋, 等. 考虑颗粒破碎影响的珊瑚砂临界状态与本构模型研究[J]. 岩土工程学报, 2019, 41(6): 989-995. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201906002.htm

    CAI Zheng-yin, HOU He-ying, ZHANG Jin-xun, et al. Critical state and constitutive model for coral sand considering particle breakage[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(6): 989-995. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201906002.htm
    [12]
    ZHANG J R, LUO M X. Dilatancy and critical state of calcareous sand incorporating particle breakage[J]. International Journal of Geomechanics, 2020, 20(4): 04020030. doi: 10.1061/(ASCE)GM.1943-5622.0001637
    [13]
    孔宪京, 朱发勇, 刘京茂, 等. 不同加载方向条件下堆石料剪胀特性试验研究[J]. 岩土力学, 2018, 39(11): 3915-3920. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201811002.htm

    KONG Xian-jing, ZHU Fa-yong, LIU Jing-mao, et al. Stress dilatancy of rockfill material under different loading directions[J]. Rock and Soil Mechanics, 2018, 39(11): 3915-3920. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201811002.htm
    [14]
    刘萌成, 高玉峰, 刘汉龙. 应力路径条件下堆石料剪切特性大型三轴试验研究[J]. 岩石力学与工程学报, 2008, 27(1): 176-186. doi: 10.3321/j.issn:1000-6915.2008.01.025

    LIU Meng-cheng, GAO Yu-feng, LIU Han-long. Study on shear behaviors of rockfill in large-scale triaxial tests under different stress paths[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(1): 176-186. (in Chinese) doi: 10.3321/j.issn:1000-6915.2008.01.025
    [15]
    郭熙灵, 胡辉, 包承纲. 堆石料颗粒破碎对剪胀性及抗剪强度的影响[J]. 岩土工程学报, 1997, 19(3): 83-88. doi: 10.3321/j.issn:1000-4548.1997.03.013

    GUO Xi-ling, HU Hui, BAO Cheng-gang. Experimental studies of the effects of grain breakage on the dilatancy and shear strength of rock fill[J]. Chinese Journal of Geotechnical Engineering, 1997, 19(3): 83-88. (in Chinese) doi: 10.3321/j.issn:1000-4548.1997.03.013
    [16]
    王远, 张胜, 敖大华, 等. 复杂应力路径下堆石料的颗粒破碎特性研究[J]. 岩土工程学报, 2018, 40(4): 698-706. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201804020.htm

    WANG Yuan, ZHANG Sheng, AO Da-hua, et al. Particle breakage characteristics of rockfills under complex stress paths[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(4): 698-706. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201804020.htm
    [17]
    王占军, 陈生水, 傅中志. 堆石料的剪胀特性与广义塑性本构模型[J]. 岩土力学, 2015, 36(7): 1931-1938. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201507019.htm

    WANG Zhan-jun, CHEN Sheng-shui, FU Zhong-zhi. Dilatancy behaviors and generalized plasticity constitutive model of rockfill materials[J]. Rock and Soil Mechanics, 2015, 36(7): 1931-1938. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201507019.htm
    [18]
    蔡正银, 李小梅, 韩林, 等. 考虑级配和颗粒破碎影响的堆石料临界状态研究[J]. 岩土工程学报, 2016, 38(8): 1357-1364. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201608001.htm

    CAI Zheng-yin, LI Xiao-mei, HAN Lin, et al. Critical state of rockfill materials considering particle gradation and breakage[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(8): 1357-1364. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201608001.htm
    [19]
    王刚, 叶沁果, 查京京. 珊瑚礁砂砾料力学行为与颗粒破碎的试验研究[J]. 岩土工程学报, 2018, 40(5): 802-810. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201805006.htm

    WANG Gang, YE Qin-guo, ZHA Jing-jing. Experimental study on mechanical behavior and particle crushing of coral sand-gravel fill[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(5): 802-810. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201805006.htm
    [20]
    张季如, 罗明星, 彭伟珂, 等. 不同应力路径下钙质砂力学特性的排水三轴试验研究[J]. 岩土工程学报. 2021, 43(4): 593-602. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202104002.htm

    ZHANG Ji-ru, LUO Ming-xing, PENG Wei-ke, et al. Drained triaxial tests on mechanical properties of calcareous sand under various stress paths[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(4): 593-602. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202104002.htm
    [21]
    NOVA R, WOOD D M. A constitutive model for sand in triaxial compression[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1979, 3(3): 255-278. doi: 10.1002/nag.1610030305
    [22]
    张季如, 华晨, 罗明星, 等. 三轴排水剪切下钙质砂的颗粒破碎特性[J]. 岩土工程学报, 2020, 42(9): 1593-1602. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202009007.htm

    ZHANG Ji-ru, HUA Chen, LUO Ming-xing, et al. Behavior of particle breakage in calcareous sand during drained triaxial shearing[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(9): 1593-1602. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202009007.htm
    [23]
    UENG T S, CHEN T J. Energy aspects of particle breakage in drained shear of sands[J]. Géotechnique, 2000, 50(1): 65-72. doi: 10.1680/geot.2000.50.1.65
    [24]
    INDRARATNA B, SALIM W. Modelling of particle breakage of coarse aggregates incorporating strength and dilatancy[J]. Proceedings of the Institution of Civil Engineers- Geotechnical Engineering, 2002, 155(4): 243-252. doi: 10.1680/geng.2002.155.4.243
    [25]
    褚福永, 朱俊高, 殷建华. 基于大三轴试验的粗粒土应力剪胀方程[J]. 四川大学学报(工程科学版), 2013, 45(5): 24-28. doi: 10.15961/j.jsuese.2013.05.003

    CHU Fu-yong, ZHU Jun-gao, YIN Jian-hua. Study on stress-dilatancy equation of coarse-grained soils based on large-scale triaxial test[J]. Journal of Sichuan University(Engineering Science Edition), 2013, 45(5): 24-28. (in Chinese) doi: 10.15961/j.jsuese.2013.05.003
    [26]
    陈金锋, 徐明, 宋二祥, 等. 不同应力路径下石灰岩碎石力学特性的大型三轴试验研究[J]. 工程力学, 2012, 29(8): 195-201. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201208032.htm

    CHEN Jin-feng, XU Ming, SONG Er-xiang, et al. Large scale triaxial testing on mechanical properties of broken limestone under various stress paths[J]. Engineering Mechanics, 2012, 29(8): 195-201. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201208032.htm
    [27]
    LEE J C, CHO W B. Characteristics of river sand soil parameter for single work-hardening constitutive model to stress path[J]. Journal of Korean Navigation and Port Research, 2012, 36(5): 395-400. doi: 10.5394/KINPR.2012.36.5.395
    [28]
    WROTH C P, BASSETT R H. A stress-strain relationship for the shearing behaviour of a sand[J]. Géotechnique, 1965, 15(1): 32-56. doi: 10.1680/geot.1965.15.1.32
    [29]
    MANZARI M T, DAFALIAS Y F. A critical state two-surface plasticity model for sands[J]. Géotechnique, 1997, 47(2): 255-272. doi: 10.1680/geot.1997.47.2.255
    [30]
    WAN R G, GUO P J. A simple constitutive model for granular soils: modified stress-dilatancy approach[J]. Computers and Geotechnics, 1998, 22(2): 109-133. doi: 10.1016/S0266-352X(98)00004-4
    [31]
    LUO M X, ZHANG J R, LIU X X, et al. Critical state elastoplastic constitutive model of angular-shaped and fragile granular materials[J]. Marine Georesources & Geotechnology, 2020, 1785065.
    [32]
    武颖利, 皇甫泽华, 郭万里, 等. 考虑颗粒破碎影响的粗粒土临界状态研究[J]. 岩土工程学报, 2019, 41(增刊2): 25-28. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2019S2008.htm

    WU Ying-li, HUANFU Ze-hua, GUO Wan-li, et al. Influences of particle breakage on critical state of coarse-grained soils[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S2): 25-28. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2019S2008.htm
    [33]
    XIAO Y, LIU H L, DING X M, et al. Influence of particle breakage on critical state line of rockfill material[J]. International Journal of Geomechanics, 2016, 16(1): 04015031.
    [34]
    孙岳崧, 濮家骝, 李广信. 不同应力路径对砂土应力-应变关系影响[J]. 岩土工程学报, 1987, 9(6): 78-88. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC198706008.htm

    SUN Yue-song, PU Jia-liu, LI Guang-xin. The effects of different stress paths on stress-strain behavior of sand[J]. Chinese Journal of Geotechnical Engineering, 1987, 9(6): 78-88. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC198706008.htm
    [35]
    JIA Y F, XU B, CHI S C, et al. Particle breakage of rockfill material during triaxial tests under complex stress paths[J]. International Journal of Geomechanics, 2019, 19(12): 04019124.
    [36]
    韩杰. 成样方法及应力路径对饱和中密细砂剪切特性影响[D]. 大连: 大连理工大学, 2016.

    HAN Jie. Influence of Sampling Method and Stress Path on the Shear Behavior of Saturated Medium Density Fine Sand[D]. Dalian: Dalian University of Technology, 2016. (in Chinese)
  • Related Articles

    [1]ZHOU Luming, ZHU Zhende, XIE Xinghua, LÜ Maolin. Non-Fourier law-based peridynamic thermo-mechanical coupling model and simulation of thermal damage and fracture in granite[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(11): 2391-2400. DOI: 10.11779/CJGE20230769
    [2]ZHONG Zilan, FENG Liqian, SHI Yuebo, WEN Weiping, ZHAO Mi. Seismic damage assessment of subway station subjected to mainshock-aftershock sequences[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(8): 1586-1594. DOI: 10.11779/CJGE20220788
    [3]ZHOU Yan-guo, SHEN Tao, WANG Yue, DING Hai-jun. Post-earthquake evolution of small-strain shear stiffness at liquefiable deposit in Christchurch[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(8): 1411-1417. DOI: 10.11779/CJGE202008005
    [4]HU Ya-yuan. Shear hyperbolic-type equivalent-time rheological model[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(8): 1549-1555. DOI: 10.11779/CJGE201808023
    [5]CAO Yong, KONG Ling-wei, YANG Ai-wu. Characteristics of stiffness degradation and strength effect of dynamic damage of structured soft soils[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 236-240.
    [6]LAI Xiao-ling, YE Wei-min, WANG Shi-mei. Experimental study on unsaturated creep characteristics of landslide soils[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(2): 286-293.
    [7]ZHANG Jiupeng, HUANG Xiaoming, MA Tao. Damage-creep characteristics and model of asphalt mixture[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(12): 1867-1871.
    [8]ZHU Changxing, RUAN Huaining, ZHU Zhende, LUO Runlin. Non-linear rheological damage model of rock[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(10): 1510-1513.
    [9]XU Hongfa, LU Hongbiao, QIAN Qihu. Creep damage effects of pulling grouting anchor in soil[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(1): 61-63.
    [10]GE Xiurun, REN Jianxi, PU Yibin, MA Wei, ZHU Yuanlin. Primary study of CT real-time testing of fatigue meso-damage propagation law of rock[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(2): 191-195.
  • Cited by

    Periodical cited type(9)

    1. 辛灏辉,高卿林,冯鹏,刘玉擎. 桥梁结构中E-GFRP单向板徐变性能与双尺度均匀化数值评估. 工程力学. 2024(08): 93-106 .
    2. 熊壮,杨学祥,范济敏. 充气膨胀控制锚杆的蠕变试验. 科学技术与工程. 2024(26): 11385-11392 .
    3. 陈文杰,叶毅荣. 玻璃纤维筋抗浮锚杆在某工程中的抗拔试验研究与应用. 广东建材. 2024(10): 76-79 .
    4. 刘鹏,刘军,郑仔弟,郑辉,白雪. 基于GFRP筋与钢绞线复合式锚杆支护施工的关键技术研究. 市政技术. 2023(08): 245-252 .
    5. 井德胜,白晓宇,王海刚,张明义,李翠翠,焦玉进,闫君,王忠胜. 玻璃纤维增强聚合物锚杆蠕变性能研究进展. 复合材料科学与工程. 2022(02): 119-128 .
    6. 白晓宇,井德胜,张明义,涂兵雄,魏国,吕承禄,黄春霞. 全长黏结非金属抗浮锚杆体系设计方法研究. 中南大学学报(自然科学版). 2022(08): 3168-3177 .
    7. 井德胜,白晓宇,刘超,刘永江,张明义,黄永峰. 抗浮锚杆荷载-位移特性及极限承载力预测. 科学技术与工程. 2021(22): 9570-9576 .
    8. 井德胜,白晓宇,冯志威,张明义,李翠翠. 玄武岩纤维增强聚合物锚杆用于地下结构抗浮的可行性研究. 材料导报. 2021(19): 19223-19229 .
    9. 白晓宇,刘雪颖,张明义,井德胜,郑晨. GFRP筋及钢筋抗浮锚杆承载特性现场试验及荷载-位移模型. 复合材料学报. 2021(12): 4138-4149 .

    Other cited types(3)

Catalog

    Article views (280) PDF downloads (235) Cited by(12)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return