• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHOU Yan-guo, SHEN Tao, WANG Yue, DING Hai-jun. Post-earthquake evolution of small-strain shear stiffness at liquefiable deposit in Christchurch[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(8): 1411-1417. DOI: 10.11779/CJGE202008005
Citation: ZHOU Yan-guo, SHEN Tao, WANG Yue, DING Hai-jun. Post-earthquake evolution of small-strain shear stiffness at liquefiable deposit in Christchurch[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(8): 1411-1417. DOI: 10.11779/CJGE202008005

Post-earthquake evolution of small-strain shear stiffness at liquefiable deposit in Christchurch

More Information
  • Received Date: August 26, 2019
  • Available Online: December 05, 2022
  • The shear stiffness of saturated sand deposit will drop significantly under the disturbance of strong earthquake shaking (e.g., liquefaction) and then recover gradually with time. The difference between the post-earthquake field testing index and the pre-earthquake value will cause systematic error in the simplified method of liquefaction evaluation based on the field case histories. In order to evaluate this difference and propose the correction approach, the HVSR method is used to analyze the acceleration records at REHS strong motion station in Christchurch from 2010 to 2011, and to observe the time variation of the small-strain shear stiffness of the liquefiable sandy soil deposit after each strong earthquake event. It is found that the average shear stiffness of the deposit drops suddenly after earthquake and then increases logarithmically, and it will take one to two weeks to approach a relatively stable state but cannot totally recover the pre-earthquake value. By considering the combined effects of the primary consolidation and the secondary consolidation, a computational model for post-earthquake small-strain shear modulus of saturated sandy soils is proposed. The model predicts the general trend of the time-dependent development of site stiffness after the occurrence of earthquake, and can be regarded as a feasible way to correct the post-earthquake field testing index to the corresponding pre-earthquake value and help to improve the reliability of the existing simplified methods for liquefaction evaluation based on the field case histories.
  • [1]
    YOUD T L, IDRISS I M, ANDRUS R D, et al. Liquefaction resistance of soils: summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2001, 127(10): 817-833. doi: 10.1061/(ASCE)1090-0241(2001)127:10(817)
    [2]
    李兆焱, 袁晓铭, 曹振中, 等. 基于新疆巴楚地震调查的砂土液化判别新公式[J]. 岩土工程学报, 2012, 34(3): 483-489. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201203018.htm

    LI Zhao-yan, YUAN Xiao-ming, CAO Zhen-zhong, et al. New evaluation formula for sand liquefaction based on survey of Bachu Earthquake in Xinjiang[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(3): 483-489. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201203018.htm
    [3]
    陈国兴, 李方明. 基于径向基函数神经网络模型的砂土液化概率判别方法[J]. 岩土工程学报, 2006, 28(3): 301-305. doi: 10.3321/j.issn:1000-4548.2006.03.004

    CHEN Guo-xing, LI Fang-ming. Probabilistic estimation of sand liquefaction based on neural network of radial basis function[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(3): 301-305. (in Chinese) doi: 10.3321/j.issn:1000-4548.2006.03.004
    [4]
    ANDRUS R D, STOKOE K H II. Liquefaction resistance of soils from shear-wave velocity[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2000, 126(11): 1015-1025. doi: 10.1061/(ASCE)1090-0241(2000)126:11(1015)
    [5]
    MITCHELL J K, SOLYMAR Z V. Time-dependent strength gain in freshly deposited or densified sand[J]. Journal of Geotechnical Engineering, 1984, 110(11): 1559-1576. doi: 10.1061/(ASCE)0733-9410(1984)110:11(1559)
    [6]
    LEON E, GASSMAN S L, TALWANI P. Accounting for soil aging when assessing liquefaction potential[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132(3): 363-377. doi: 10.1061/(ASCE)1090-0241(2006)132:3(363)
    [7]
    HAYATI H, ANDRUS D. Updated liquefaction resistance correction factors for aged sands[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2009, 135(11): 1683-1692. doi: 10.1061/(ASCE)GT.1943-5606.0000118
    [8]
    ANDRUS R D, HAYATI H, MOHANAN N P. Correcting liquefaction resistance for aged sands using measured to estimated velocity ratio[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2009, 135(6): 735-744. doi: 10.1061/(ASCE)GT.1943-5606.0000025
    [9]
    周燕国, 丁海军, 陈云敏, 等. 基于原位测试指标的砂土时间效应定量表征初步研究[J]. 岩土工程学报, 2015, 37(11): 2000-2006. doi: 10.11779/CJGE201511009

    ZHOU Yan-guo, DING Hai-jun, CHEN Yun-min, et al. Characterization of ageing effect of sands based on field testing indices[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(11): 2000-2006. (in Chinese) doi: 10.11779/CJGE201511009
    [10]
    HARDIN, B O, DRNEVICH, V P. Shear modulus and damping in soils[J]. Soil Mechanics and Foundation Engineering Div, 1972, 98(7): 667-692. doi: 10.1061/JSFEAQ.0001760
    [11]
    PAVLENKO O, IRIKURA K. Changes in shear moduli of liquefied and nonliquefied soils during the 1995 Kobe earthquake and its aftershocks at three vertical-array sites[J]. Bulletin of the Seismological Society of America, 2002, 92(5): 1952-1969. doi: 10.1785/0120010143
    [12]
    孙锐, 袁晓铭. 液化土层地震动特征分析[J]. 岩土工程学报, 2004, 26(5): 684-690. doi: 10.3321/j.issn:1000-4548.2004.05.023

    SUN Rui, YUAN Xiao-ming. Analysis on feature of surface ground motion for liquefied soil layer[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(5): 684-690. (in Chinese) doi: 10.3321/j.issn:1000-4548.2004.05.023
    [13]
    孙锐, 杨洋, 陈龙伟, 等. 液化层特征量对场地卓越频率影响的理论解答[J]. 岩土工程学报, 2018, 40(5): 811-818. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201805007.htm

    SUN Rui, YANG Yang, CHEN Long-wei, et al. Analytical solutions for changes in predominant frequency of a site based on characteristic parameters of liquefiable interlayer[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(5): 811-818. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201805007.htm
    [14]
    KRAMER S L. Geotechnical Earthquake Engineering[M]. New Jersey: Prentice Hall, 1996.
    [15]
    WOTHERSPOON L M, ORENSE R P, BRADLEY B A, et al. Geotechnical Characterisation of Christchurch Strong Motion Stations, Version 2.0-October 2014[R]. Auckland: The University of Auckland, 2014.
    [16]
    CHAO K, PENG Z. Temporal changes of seismic velocity and anisotropy in the shallow crust induced by the 1999 October 22 M6.4 Chia-Yi, Taiwan earthquake[J]. Geophysical Journal of the Royal Astronomical Society, 2010, 179(3): 1800-1816.
    [17]
    PENG Z, BEN-ZION Y. Temporal changes of shallow seismic velocity around the Karadere-Düzce branch of the north Anatolian fault and strong ground motion[J]. Pure and Applied Geophysics, 2006, 163(2/3): 567-600.
    [18]
    DOWNES G, YETTON M. Pre-2010 historical seismicity near Christchurch, New Zealand: the 1869 MW 4.7~4.9 Christchurch and 1870 MW 5.6~5.8 Lake Ellesmere earthquakes[J]. New Zealand Journal of Geology and Geophysics, 2012, 55(3): 199-205. doi: 10.1080/00288306.2012.690767
    [19]
    沈涛. 砂土地震液化小应变刚度衰减与恢复规律研究[D]. 杭州: 浙江大学, 2019.

    SHEN Tao. Reduction and Recovery of Small-Strain Stiffness During Earthquake- Induced Soil Liquefaction[D]. Hangzhou: Zhejiang University, 2019. (in Chinese)
    [20]
    BAXTER C D P, MITCHELL J K. Experimental study on the aging of sands[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2004, 130(10): 1051-1062. doi: 10.1061/(ASCE)1090-0241(2004)130:10(1051)
    [21]
    WANG Y H, GAO Y, LENG G. Experimental characterizations of an aging mechanism of sands[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2015, 142(2): 06015016.
    [22]
    HOWIE J A, SHOZEN T, VAID Y P. Effect of ageing on stiffness of very loose sand[J]. Canadian Geotechnical Journal, 2002, 39(1): 149-156. doi: 10.1139/t01-085
    [23]
    ROBERTSON P K. Estimating in-situ soil permeability from CPT & CPTU[C]//2nd International Symposium on Cone Penetration Testing. 2010, Pomona, CA, USA.
    [24]
    MOHAMMADI S D, NIKOUDEL M R, RAHIMI H, et al. Application of the dynamic cone penetrometer (DCP) for determination of the engineering parameters of sandy soils[J]. Engineering Geology, 2008, 101(3/4): 195-203.

Catalog

    Article views (283) PDF downloads (149) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return