Citation: | ZHOU Luming, ZHU Zhende, XIE Xinghua, LÜ Maolin. Non-Fourier law-based peridynamic thermo-mechanical coupling model and simulation of thermal damage and fracture in granite[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(11): 2391-2400. DOI: 10.11779/CJGE20230769 |
[1] |
ZHANG J Y, SHEN Y J, YANG G S, et al. Inconsistency of changes in uniaxial compressive strength and P-wave velocity of sandstone after temperature treatments[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2021, 13(1): 143-153. doi: 10.1016/j.jrmge.2020.05.008
|
[2] |
郤保平, 吴阳春, 王帅, 等. 热冲击作用下花岗岩力学特性及其随冷却温度演变规律试验研究[J]. 岩土力学, 2020, 41(增刊1): 83-94.
XI Baoping, WU Yangchun, WANG Shuai, et al. Experimental study on mechanical properties of granite under thermal shock and its evolution with cooling temperature[J]. Rock and Soil Mechanics, 2020, 41(S1): 83-94. (in Chinese)
|
[3] |
WANG G Y, YANG D, LIU S W, et al. Experimental study on the anisotropic mechanical properties of oil shales under real-time high-temperature conditions[J]. Rock Mechanics and Rock Engineering, 2021, 54(12): 6565-6583. doi: 10.1007/s00603-021-02624-7
|
[4] |
YANG S Q, HUANG Y H, TIAN W L, et al. Effect of high temperature on deformation failure behavior of granite specimen containing a single fissure under uniaxial compression[J]. Rock Mechanics and Rock Engineering, 2019, 52(7): 2087-2107. doi: 10.1007/s00603-018-1725-5
|
[5] |
ZHANG F, ZHAO J J, HU D W, et al. Laboratory investigation on physical and mechanical properties of granite after heating and water-cooling treatment[J]. Rock Mechanics and Rock Engineering, 2018, 51(3): 677-694. doi: 10.1007/s00603-017-1350-8
|
[6] |
唐世斌, 唐春安, 朱万成, 等. 热应力作用下的岩石破裂过程分析[J]. 岩石力学与工程学报, 2006, 25(10): 2071-2078. doi: 10.3321/j.issn:1000-6915.2006.10.019
TANG Shibin, TANG Chun'an, ZHU Wancheng, et al. Numerical investigation on rock failure process induced by thermal stress[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(10): 2071-2078. (in Chinese) doi: 10.3321/j.issn:1000-6915.2006.10.019
|
[7] |
JIAO Y Y, ZHANG X L, ZHANG H Q, et al. A coupled thermo-mechanical discontinuum model for simulating rock cracking induced by temperature stresses[J]. Computers and Geotechnics, 2015, 67: 142-149. doi: 10.1016/j.compgeo.2015.03.009
|
[8] |
严成增. FDEM-TM方法模拟岩石热破裂[J]. 岩土工程学报, 2018, 40(7): 1198-1204. doi: 10.11779/CJGE201807005
YAN Chengzeng. Simulating thermal cracking of rock using FDEM-TM method[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(7): 1198-1204. (in Chinese) doi: 10.11779/CJGE201807005
|
[9] |
YAO J, ZHANG X, SUN Z X, et al. Numerical simulation of the heat extraction in 3D-EGS with thermal-hydraulic- mechanical coupling method based on discrete fractures model[J]. Geothermics, 2018, 74: 19-34. doi: 10.1016/j.geothermics.2017.12.005
|
[10] |
SILLING S A. Reformulation of elasticity theory for discontinuities and long-range forces[J]. Journal of the Mechanics and Physics of Solids, 2000, 48(1): 175-209. doi: 10.1016/S0022-5096(99)00029-0
|
[11] |
SILLING S A, ASKARI E. A meshfree method based on the peridynamic model of solid mechanics[J]. Computers and Structures, 2005, 83(17/18): 1526-1535.
|
[12] |
GAO C L, ZHOU Z Q, LI L P, et al. Strength reduction model for jointed rock masses and peridynamics simulation of uniaxial compression testing[J]. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2021, 7(2): 34. doi: 10.1007/s40948-021-00232-x
|
[13] |
马鹏飞, 李树忱, 袁超, 等. 基于SED准则的近场动力学及岩石类材料裂纹扩展模拟[J]. 岩土工程学报, 2021, 43(6): 1109-1117. doi: 10.11779/CJGE202106014
MA Pengfei, LI Shuchen, YUAN Chao, et al. Simulations of crack propagation in rock-like materials by peridynamics based on SED criterion[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(6): 1109-1117. (in Chinese) doi: 10.11779/CJGE202106014
|
[14] |
马鹏飞, 李树忱, 周慧颖, 等. 岩石材料裂纹扩展的改进近场动力学方法模拟[J]. 岩土力学, 2019, 40(10): 4111-4119.
MA Pengfei, LI Shuchen, ZHOU Huiying, et al. Simulations of crack propagation in rock-like materials using modified peridynamic method[J]. Rock and Soil Mechanics, 2019, 40(10): 4111-4119. (in Chinese)
|
[15] |
ZHANG H, QIAO P Z. An extended state-based peridynamic model for damage growth prediction of bimaterial structures under thermomechanical loading[J]. Engineering Fracture Mechanics, 2018, 189: 81-97. doi: 10.1016/j.engfracmech.2017.09.023
|
[16] |
WANG Y T, ZHOU X P, KOU M M. An improved coupled thermo-mechanic bond-based peridynamic model for cracking behaviors in brittle solids subjected to thermal shocks[J]. European Journal of Mechanics-A, 2019, 73: 282-305. doi: 10.1016/j.euromechsol.2018.09.007
|
[17] |
WANG Y T, ZHOU X P. Peridynamic simulation of thermal failure behaviors in rocks subjected to heating from boreholes[J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 117: 31-48. doi: 10.1016/j.ijrmms.2019.03.007
|
[18] |
YANG Z, YANG S Q, CHEN M. Peridynamic simulation on fracture mechanical behavior of granite containing a single fissure after thermal cycling treatment[J]. Computers and Geotechnics, 2020, 120: 103414. doi: 10.1016/j.compgeo.2019.103414
|
[19] |
YANG Z, YANG S Q, TIAN W L. Peridynamic simulation of fracture mechanical behaviour of granite specimen under real-time temperature and post-temperature treatments[J]. International Journal of Rock Mechanics and Mining Sciences, 2021, 138: 104573. doi: 10.1016/j.ijrmms.2020.104573
|
[20] |
CATTANEO C. A form of heat conduction equation which eliminates the paradox of instantaneous propagation[J]. Compte Rendus, 1958, 247: 431-433.
|
[21] |
VERNOTTE P. Paradoxes in the continuous theory of the heat conduction[J]. Compte Rendus, 1958, 246: 3154-3155.
|
[22] |
TZOU D Y. A unified field approach for heat conduction from macro- to micro-scales[J]. Journal of Heat Transfer, 1995, 117(1): 8-16. doi: 10.1115/1.2822329
|
[23] |
AL-NIMR M A, NAJI M, ABDALLAH R I. Thermal behavior of a multi-layered thin slab carrying periodic signals under the effect of the dual-phase-lag heat conduction model[J]. International Journal of Thermophysics, 2004, 25(3): 949-966. doi: 10.1023/B:IJOT.0000034247.32646.d4
|
[24] |
WANG L J, XU J F, WANG J X. A peridynamic framework and simulation of non-Fourier and nonlocal heat conduction[J]. International Journal of Heat and Mass Transfer, 2018, 118: 1284-1292. doi: 10.1016/j.ijheatmasstransfer.2017.11.074
|
[25] |
JANSEN D P, CARLSON S R, YOUNG R P, et al. Ultrasonic imaging and acoustic emission monitoring of thermally induced microcracks in Lac du Bonnet granite[J]. Journal of Geophysical Research: Solid Earth, 1993, 98(B12): 22231-22243. doi: 10.1029/93JB01816
|
[26] |
MADENCI E, OTERKUS E. Peridynamic Theory and Its Applications[M]. New York: Springer, 2014.
|
[27] |
HOSSEINI-TEHRANI P, ESLAMI M R. BEM analysis of thermal and mechanical shock in a two-dimensional finite domain considering coupled thermoelasticity[J]. Engineering Analysis with Boundary Elements, 2000, 24(3): 249-257. doi: 10.1016/S0955-7997(99)00063-6
|
[28] |
WANG Y T, ZHOU X P, XU X. Numerical simulation of propagation and coalescence of flaws in rock materials under compressive loads using the extended non-ordinary state-based peridynamics[J]. Engineering Fracture Mechanics, 2016, 163: 248-273. doi: 10.1016/j.engfracmech.2016.06.013
|
[29] |
WANNE T S, YOUNG R P. Bonded-particle modeling of thermally fractured granite[J]. International Journal of Rock Mechanics and Mining Sciences, 2008, 45(5): 789-799. doi: 10.1016/j.ijrmms.2007.09.004
|
[30] |
GOFFREDO DE PORTU. Introduction to Mechanical Behaviour of Ceramics[M]. Faenza: CNR, 1992.
|
[31] |
ISHIDA T, KINOSHITA N, WAKABAYASHI N. Acoustic emission monitoring during thermal cracking of a granite block heated in a center hole[C]//Proceedings of the 3rd Asian Rock Mechanics Symposium. Kyoto, 2004.
|
[32] |
HUANG X, TANG S B, TANG C A, et al. Numerical simulation of cracking behavior in artificially designed rock models subjected to heating from a central borehole[J]. International Journal of Rock Mechanics and Mining Sciences, 2017, 98: 191-202. doi: 10.1016/j.ijrmms.2017.07.016
|
[33] |
胡学功, 刘登瀛, 周定伟. 细陶瓷棒的脉冲热流波动传播行为[J]. 应用科学学报, 2002, 20(3): 305-308. doi: 10.3969/j.issn.0255-8297.2002.03.019
HU Xuegong, LIU Dengying, ZHOU Dingwei. The behavior of pulse heat flux wave propagation in a fine round ceramic bar[J]. Journal of Applied Sciences, 2002, 20(3): 305-308. (in Chinese) doi: 10.3969/j.issn.0255-8297.2002.03.019
|
[34] |
KAMINSKI W. Hyperbolic heat conduction equation for materials with a nonhomogeneous inner structure[J]. Journal of Heat Transfer, 1990, 112(3): 555-560. doi: 10.1115/1.2910422
|
[35] |
GUO S L, WANG B L. Thermal shock fracture of a cylinder with a penny-shaped crack based on hyperbolic heat conduction[J]. International Journal of Heat and Mass Transfer, 2015, 91: 235-245. doi: 10.1016/j.ijheatmasstransfer.2015.07.081
|
[36] |
GUO S L, WANG B L. Thermal shock cracking behavior of a cylinder specimen with an internal penny-shaped crack based on non-fourier heat conduction[J]. International Journal of Thermophysics, 2016, 37(2): 17. doi: 10.1007/s10765-015-2029-6
|
[1] | LIU Hongwei, WANG Mengqi, ZHAN Liangtong, FENG Song, WU Tao. Method and apparatus for measuring in-situ gas diffusion coefficient and permeability coefficient of unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(5): 948-958. DOI: 10.11779/CJGE20221228 |
[2] | JI Yong-xin, ZHANG Wen-jie. Experimental study on diffusion of chloride ions in unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(9): 1755-1760. DOI: 10.11779/CJGE202109022 |
[3] | XU Fei, CAI Yue-bo, QIAN Wen-xun, WEI Hua, ZHUANG Hua-xia. Mechanism of cemented soil modified by aliphatic ionic soil stabilizer[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(9): 1679-1687. DOI: 10.11779/CJGE201909012 |
[4] | HUANG Wei, LIU Qing-bing, XIANG Wei, ZHANG Yun-long, WANG Zhen-hua, DAO Minh Huan. Water adsorption characteristics and water retention model for montmorillonite modified by ionic soil stabilizer[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(1): 121-130. DOI: 10.11779/CJGE201901013 |
[5] | ZHANG Wen-jie, GU Chen, LOU Xiao-hong. Measurement of hydraulic conductivity and diffusion coefficient of backfill for soil-bentonite cutoff wall under low consolidation pressure[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(10): 1915-1921. DOI: 10.11779/CJGE201710021 |
[6] | HUANG Qing-fu, ZHAN Mei-li, SHENG Jin-chang, LUO Yu-long, ZHANG Xia. Numerical method to generate granular assembly with any desired relative density based on DEM[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(3): 537-543. DOI: 10.11779/CJGE201503019 |
[7] | LIU Qing-bing, XIANG Wei, CUI De-shan. Effect of ionic soil stabilizer on bound water of expansive soils[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(10): 1887-1895. |
[8] | LIU Qing-bing, XIANG Wei, CUI De-shan, CAO Li-jing. Mechanism of expansive soil improved by ionic soil stabilizer[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(4): 648. |
[9] | Microcosmic mechanism of ion transport in charged clay soils[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(11): 1794-1799. |
[10] | XI Yong, Hui, REN Jie. Laboratory determination of diffusion and distribution coefficients of contaminants in clay soil[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(3): 397-402. |