• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHOU Luming, ZHU Zhende, XIE Xinghua, LÜ Maolin. Non-Fourier law-based peridynamic thermo-mechanical coupling model and simulation of thermal damage and fracture in granite[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(11): 2391-2400. DOI: 10.11779/CJGE20230769
Citation: ZHOU Luming, ZHU Zhende, XIE Xinghua, LÜ Maolin. Non-Fourier law-based peridynamic thermo-mechanical coupling model and simulation of thermal damage and fracture in granite[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(11): 2391-2400. DOI: 10.11779/CJGE20230769

Non-Fourier law-based peridynamic thermo-mechanical coupling model and simulation of thermal damage and fracture in granite

More Information
  • Received Date: August 13, 2023
  • Available Online: March 24, 2024
  • It is of great significance to study the thermal damage and fracture characteristics of rocks for deep rock projects, such as geothermal exploitation. Within the framework of the traditional classical ordinary state-based peridynamic theory, a thermo-mechanical coupling model based on the non-Fourier heat conduction law is proposed by introducing a dual-phase-lag model. The model is validated through the transient heat conduction problems in the plate and thermal damage and fracture tests on LdB granite. It is found that the simulated results accurately reflect the thermal damage and fracture characteristics, as well as the discontinuity in temperature distribution, of LdB granite. Furthermore, through numerical analysis, it is observed that the temperature gradient relaxation time promotes heat conduction, leading to an increase in the degree of the thermal damage and fracture with an increase in the temperature gradient relaxation time, while it decreases with an increase in the heat flux relaxation time. This research provides valuable insights for a better understanding of the thermal damage and fracture behavior of rocks and offers beneficial explorations for optimizing the geothermal energy extraction projects.
  • [1]
    ZHANG J Y, SHEN Y J, YANG G S, et al. Inconsistency of changes in uniaxial compressive strength and P-wave velocity of sandstone after temperature treatments[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2021, 13(1): 143-153. doi: 10.1016/j.jrmge.2020.05.008
    [2]
    郤保平, 吴阳春, 王帅, 等. 热冲击作用下花岗岩力学特性及其随冷却温度演变规律试验研究[J]. 岩土力学, 2020, 41(增刊1): 83-94.

    XI Baoping, WU Yangchun, WANG Shuai, et al. Experimental study on mechanical properties of granite under thermal shock and its evolution with cooling temperature[J]. Rock and Soil Mechanics, 2020, 41(S1): 83-94. (in Chinese)
    [3]
    WANG G Y, YANG D, LIU S W, et al. Experimental study on the anisotropic mechanical properties of oil shales under real-time high-temperature conditions[J]. Rock Mechanics and Rock Engineering, 2021, 54(12): 6565-6583. doi: 10.1007/s00603-021-02624-7
    [4]
    YANG S Q, HUANG Y H, TIAN W L, et al. Effect of high temperature on deformation failure behavior of granite specimen containing a single fissure under uniaxial compression[J]. Rock Mechanics and Rock Engineering, 2019, 52(7): 2087-2107. doi: 10.1007/s00603-018-1725-5
    [5]
    ZHANG F, ZHAO J J, HU D W, et al. Laboratory investigation on physical and mechanical properties of granite after heating and water-cooling treatment[J]. Rock Mechanics and Rock Engineering, 2018, 51(3): 677-694. doi: 10.1007/s00603-017-1350-8
    [6]
    唐世斌, 唐春安, 朱万成, 等. 热应力作用下的岩石破裂过程分析[J]. 岩石力学与工程学报, 2006, 25(10): 2071-2078. doi: 10.3321/j.issn:1000-6915.2006.10.019

    TANG Shibin, TANG Chun'an, ZHU Wancheng, et al. Numerical investigation on rock failure process induced by thermal stress[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(10): 2071-2078. (in Chinese) doi: 10.3321/j.issn:1000-6915.2006.10.019
    [7]
    JIAO Y Y, ZHANG X L, ZHANG H Q, et al. A coupled thermo-mechanical discontinuum model for simulating rock cracking induced by temperature stresses[J]. Computers and Geotechnics, 2015, 67: 142-149. doi: 10.1016/j.compgeo.2015.03.009
    [8]
    严成增. FDEM-TM方法模拟岩石热破裂[J]. 岩土工程学报, 2018, 40(7): 1198-1204. doi: 10.11779/CJGE201807005

    YAN Chengzeng. Simulating thermal cracking of rock using FDEM-TM method[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(7): 1198-1204. (in Chinese) doi: 10.11779/CJGE201807005
    [9]
    YAO J, ZHANG X, SUN Z X, et al. Numerical simulation of the heat extraction in 3D-EGS with thermal-hydraulic- mechanical coupling method based on discrete fractures model[J]. Geothermics, 2018, 74: 19-34. doi: 10.1016/j.geothermics.2017.12.005
    [10]
    SILLING S A. Reformulation of elasticity theory for discontinuities and long-range forces[J]. Journal of the Mechanics and Physics of Solids, 2000, 48(1): 175-209. doi: 10.1016/S0022-5096(99)00029-0
    [11]
    SILLING S A, ASKARI E. A meshfree method based on the peridynamic model of solid mechanics[J]. Computers and Structures, 2005, 83(17/18): 1526-1535.
    [12]
    GAO C L, ZHOU Z Q, LI L P, et al. Strength reduction model for jointed rock masses and peridynamics simulation of uniaxial compression testing[J]. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2021, 7(2): 34. doi: 10.1007/s40948-021-00232-x
    [13]
    马鹏飞, 李树忱, 袁超, 等. 基于SED准则的近场动力学及岩石类材料裂纹扩展模拟[J]. 岩土工程学报, 2021, 43(6): 1109-1117. doi: 10.11779/CJGE202106014

    MA Pengfei, LI Shuchen, YUAN Chao, et al. Simulations of crack propagation in rock-like materials by peridynamics based on SED criterion[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(6): 1109-1117. (in Chinese) doi: 10.11779/CJGE202106014
    [14]
    马鹏飞, 李树忱, 周慧颖, 等. 岩石材料裂纹扩展的改进近场动力学方法模拟[J]. 岩土力学, 2019, 40(10): 4111-4119.

    MA Pengfei, LI Shuchen, ZHOU Huiying, et al. Simulations of crack propagation in rock-like materials using modified peridynamic method[J]. Rock and Soil Mechanics, 2019, 40(10): 4111-4119. (in Chinese)
    [15]
    ZHANG H, QIAO P Z. An extended state-based peridynamic model for damage growth prediction of bimaterial structures under thermomechanical loading[J]. Engineering Fracture Mechanics, 2018, 189: 81-97. doi: 10.1016/j.engfracmech.2017.09.023
    [16]
    WANG Y T, ZHOU X P, KOU M M. An improved coupled thermo-mechanic bond-based peridynamic model for cracking behaviors in brittle solids subjected to thermal shocks[J]. European Journal of Mechanics-A, 2019, 73: 282-305. doi: 10.1016/j.euromechsol.2018.09.007
    [17]
    WANG Y T, ZHOU X P. Peridynamic simulation of thermal failure behaviors in rocks subjected to heating from boreholes[J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 117: 31-48. doi: 10.1016/j.ijrmms.2019.03.007
    [18]
    YANG Z, YANG S Q, CHEN M. Peridynamic simulation on fracture mechanical behavior of granite containing a single fissure after thermal cycling treatment[J]. Computers and Geotechnics, 2020, 120: 103414. doi: 10.1016/j.compgeo.2019.103414
    [19]
    YANG Z, YANG S Q, TIAN W L. Peridynamic simulation of fracture mechanical behaviour of granite specimen under real-time temperature and post-temperature treatments[J]. International Journal of Rock Mechanics and Mining Sciences, 2021, 138: 104573. doi: 10.1016/j.ijrmms.2020.104573
    [20]
    CATTANEO C. A form of heat conduction equation which eliminates the paradox of instantaneous propagation[J]. Compte Rendus, 1958, 247: 431-433.
    [21]
    VERNOTTE P. Paradoxes in the continuous theory of the heat conduction[J]. Compte Rendus, 1958, 246: 3154-3155.
    [22]
    TZOU D Y. A unified field approach for heat conduction from macro- to micro-scales[J]. Journal of Heat Transfer, 1995, 117(1): 8-16. doi: 10.1115/1.2822329
    [23]
    AL-NIMR M A, NAJI M, ABDALLAH R I. Thermal behavior of a multi-layered thin slab carrying periodic signals under the effect of the dual-phase-lag heat conduction model[J]. International Journal of Thermophysics, 2004, 25(3): 949-966. doi: 10.1023/B:IJOT.0000034247.32646.d4
    [24]
    WANG L J, XU J F, WANG J X. A peridynamic framework and simulation of non-Fourier and nonlocal heat conduction[J]. International Journal of Heat and Mass Transfer, 2018, 118: 1284-1292. doi: 10.1016/j.ijheatmasstransfer.2017.11.074
    [25]
    JANSEN D P, CARLSON S R, YOUNG R P, et al. Ultrasonic imaging and acoustic emission monitoring of thermally induced microcracks in Lac du Bonnet granite[J]. Journal of Geophysical Research: Solid Earth, 1993, 98(B12): 22231-22243. doi: 10.1029/93JB01816
    [26]
    MADENCI E, OTERKUS E. Peridynamic Theory and Its Applications[M]. New York: Springer, 2014.
    [27]
    HOSSEINI-TEHRANI P, ESLAMI M R. BEM analysis of thermal and mechanical shock in a two-dimensional finite domain considering coupled thermoelasticity[J]. Engineering Analysis with Boundary Elements, 2000, 24(3): 249-257. doi: 10.1016/S0955-7997(99)00063-6
    [28]
    WANG Y T, ZHOU X P, XU X. Numerical simulation of propagation and coalescence of flaws in rock materials under compressive loads using the extended non-ordinary state-based peridynamics[J]. Engineering Fracture Mechanics, 2016, 163: 248-273. doi: 10.1016/j.engfracmech.2016.06.013
    [29]
    WANNE T S, YOUNG R P. Bonded-particle modeling of thermally fractured granite[J]. International Journal of Rock Mechanics and Mining Sciences, 2008, 45(5): 789-799. doi: 10.1016/j.ijrmms.2007.09.004
    [30]
    GOFFREDO DE PORTU. Introduction to Mechanical Behaviour of Ceramics[M]. Faenza: CNR, 1992.
    [31]
    ISHIDA T, KINOSHITA N, WAKABAYASHI N. Acoustic emission monitoring during thermal cracking of a granite block heated in a center hole[C]//Proceedings of the 3rd Asian Rock Mechanics Symposium. Kyoto, 2004.
    [32]
    HUANG X, TANG S B, TANG C A, et al. Numerical simulation of cracking behavior in artificially designed rock models subjected to heating from a central borehole[J]. International Journal of Rock Mechanics and Mining Sciences, 2017, 98: 191-202. doi: 10.1016/j.ijrmms.2017.07.016
    [33]
    胡学功, 刘登瀛, 周定伟. 细陶瓷棒的脉冲热流波动传播行为[J]. 应用科学学报, 2002, 20(3): 305-308. doi: 10.3969/j.issn.0255-8297.2002.03.019

    HU Xuegong, LIU Dengying, ZHOU Dingwei. The behavior of pulse heat flux wave propagation in a fine round ceramic bar[J]. Journal of Applied Sciences, 2002, 20(3): 305-308. (in Chinese) doi: 10.3969/j.issn.0255-8297.2002.03.019
    [34]
    KAMINSKI W. Hyperbolic heat conduction equation for materials with a nonhomogeneous inner structure[J]. Journal of Heat Transfer, 1990, 112(3): 555-560. doi: 10.1115/1.2910422
    [35]
    GUO S L, WANG B L. Thermal shock fracture of a cylinder with a penny-shaped crack based on hyperbolic heat conduction[J]. International Journal of Heat and Mass Transfer, 2015, 91: 235-245. doi: 10.1016/j.ijheatmasstransfer.2015.07.081
    [36]
    GUO S L, WANG B L. Thermal shock cracking behavior of a cylinder specimen with an internal penny-shaped crack based on non-fourier heat conduction[J]. International Journal of Thermophysics, 2016, 37(2): 17. doi: 10.1007/s10765-015-2029-6
  • Related Articles

    [1]LIU Hongwei, WANG Mengqi, ZHAN Liangtong, FENG Song, WU Tao. Method and apparatus for measuring in-situ gas diffusion coefficient and permeability coefficient of unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(5): 948-958. DOI: 10.11779/CJGE20221228
    [2]JI Yong-xin, ZHANG Wen-jie. Experimental study on diffusion of chloride ions in unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(9): 1755-1760. DOI: 10.11779/CJGE202109022
    [3]XU Fei, CAI Yue-bo, QIAN Wen-xun, WEI Hua, ZHUANG Hua-xia. Mechanism of cemented soil modified by aliphatic ionic soil stabilizer[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(9): 1679-1687. DOI: 10.11779/CJGE201909012
    [4]HUANG Wei, LIU Qing-bing, XIANG Wei, ZHANG Yun-long, WANG Zhen-hua, DAO Minh Huan. Water adsorption characteristics and water retention model for montmorillonite modified by ionic soil stabilizer[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(1): 121-130. DOI: 10.11779/CJGE201901013
    [5]ZHANG Wen-jie, GU Chen, LOU Xiao-hong. Measurement of hydraulic conductivity and diffusion coefficient of backfill for soil-bentonite cutoff wall under low consolidation pressure[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(10): 1915-1921. DOI: 10.11779/CJGE201710021
    [6]HUANG Qing-fu, ZHAN Mei-li, SHENG Jin-chang, LUO Yu-long, ZHANG Xia. Numerical method to generate granular assembly with any desired relative density based on DEM[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(3): 537-543. DOI: 10.11779/CJGE201503019
    [7]LIU Qing-bing, XIANG Wei, CUI De-shan. Effect of ionic soil stabilizer on bound water of expansive soils[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(10): 1887-1895.
    [8]LIU Qing-bing, XIANG Wei, CUI De-shan, CAO Li-jing. Mechanism of expansive soil improved by ionic soil stabilizer[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(4): 648.
    [9]Microcosmic mechanism of ion transport in charged clay soils[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(11): 1794-1799.
    [10]XI Yong, Hui, REN Jie. Laboratory determination of diffusion and distribution coefficients of contaminants in clay soil[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(3): 397-402.

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return