• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
HU Ya-yuan. Shear hyperbolic-type equivalent-time rheological model[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(8): 1549-1555. DOI: 10.11779/CJGE201808023
Citation: HU Ya-yuan. Shear hyperbolic-type equivalent-time rheological model[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(8): 1549-1555. DOI: 10.11779/CJGE201808023

Shear hyperbolic-type equivalent-time rheological model

More Information
  • Received Date: July 16, 2017
  • Published Date: August 24, 2018
  • In order to predict the rheological deformation under variable shear loadings, the Yin-Graham's equivalent-time method is used to derive a shear rheological model in the framework of continuum mechanics with thermodynamic internal variables. Firstly, the Mesri's hyperbolic creep expression is generalized into dissipative space, and the equivalent-time lines between viscoplastic shear strain and shear stress are plotted in the dissipative space. Secondly, the relationship equation between shear viscoplastic strain rate and equivalent time is established using the Yin-Graham's equivalent-time method, and the function expression among shear viscoplastic strain rate, stress level and shear viscoplastic strain is obtained. Finally, after using the mechanical formula that dissipative stress is equal to the true stress and combining the expression for viscoplastic strain rate with linear elastic constitutive equation, a one-dimensional elasto-viscoplastic shear rheological model is formulated, and the expressions for rheological model are studied in terms of the absolute equivalent time and the relative equivalent time, respectively. Based on this rheological model, the analytical solutions of shear rheology are obtained for single-stage and multi-stage loading in drained triaxial shear creep tests. The case study shows that the shear rheological model can relatively well fit the test data of drained triaxial shear creep tests.
  • [1]
    BUISMAN K.Result of long duration settlement tests[C]// Delft Geotechnics, Proceedings of First International Conference on Soil Mechanics and Foundation Engineering. Delft, 1936: 103-106.
    [2]
    SINGH A, MITCHELL J K.General stress-strain-time function for clay[J]. Journal of the Clay Mechanics and Foundation Division, 1968, 94(SM1): 21-46.
    [3]
    MESRI G. REBRES-CORDERO E, SCHIELDS D R, et al.Shear stress-strain-time behavior of clays[J]. Géotechnique, 1981, 31(4): 537-552.
    [4]
    余湘娟, 殷宗泽, 董卫军. 荷载对软土次固结影响的试验研究[J]. 岩土工程学报, 2007, 29(6): 913-915.
    (YU Xiang-juan, YIN Zong-ze, DONG Wei-jun.Influence of load on secondary consolidation deformation of soft soils[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(6): 913-915. (in Chinese))
    [5]
    张先伟. 结构性软土蠕变特性及扰动状态模型[D]. 长春: 吉林大学, 2010.
    (ZHANG Xian-wei.Creep characteristics of structured soft clay and its DSC model[D]. Changchun: Jilin University, 2010. (in Chinese))
    [6]
    杨爱武, 张兆杰, 孔令伟. 不同应力状态下软黏土蠕变特性试验研究[J]. 岩土力学, 2014, 35(增刊2): 53-60.
    (YANG Ai-wu, ZHANG Zhao-jie, KONG Ling-wei.Experimental study of creep property of soft clay under different stress conditions[J]. Rock and Soil Mechanics, 2014, 35(S2): 53-60. (in Chinese))
    [7]
    曾玲玲, 洪振舜, 刘松玉, 等. 天然沉积结构性土的次固结变形预测方法[J]. 岩土力学, 2011, 32(10): 3136-3142.
    (ZENG Ling-ling, HONG Zhen-shun, LIU Song-yu, et al.A method for predicting deformation caused by secondary consolidation for naturally sedimentary structural clays[J]. Rock and Soil Mechanics, 2011, 32(10): 3136-3142. (in Chinese))
    [8]
    殷建华. 从本构模型研究到试验和光纤监测技术研发[J]. 岩土工程学报, 2011, 33(1): 1-15.
    (YIN Jian-hua.From constitutive modeling to development of laboratory testing and optical fiber sensor monitoring technologies[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(1): 1-15. (in Chinese))
    [9]
    尹振宇. 天然软黏土的弹黏塑性本构模型:进展及发展[J].岩土工程学报, 2011, 33(9): 1357-1369.
    (YIN Zhen-yu.Elastic viscoplastic models for natural soft clay: review and development[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(9): 1357-1369. (in Chinese))
    [10]
    YIN, J H, GRAHAM, J.Viscous-elastic-plastic modelling of one-dimensional time-dependent behaviour of clays[J]. Canadian Geotechnical Journal, 1989, 26: 199-209.
    [11]
    YIN J H, ZHU J G, GRAHAM J.A new elastic viscoplastic model for time-dependent behavior of normally and overconsolidated clays: theory and verification[J]. Canada Geotechnical Journal, 2002, 39: 157-174.
    [12]
    柯文汇, 陈健, 盛谦. 结构性软黏土的一维弹黏塑性模型[J]. 岩土工程学报, 2016, 38(3): 494-503.
    (KE Wen-hui, CHEN Jian, SHENG Qian.One-dimensional elasto-viscoplastic model for structured soft clays[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(3): 494-503. (in Chinese))
    [13]
    胡亚元. 黏土的一维非平行等效时间线流变模型[J]. 土木建筑与环境工程, 2012, 34(2): 32-38.
    (HU Ya-yuan.A 1-D nonparallel equivalent-time-lines rheological model for clay[J]. Journal of Civil, Architectural & Environmental Engineering, 2012, 34(2): 32-38. (in Chinese))
    [14]
    ZHU G F, YIN J H.Elastic visco-plastic finite element consolidation modelling of Berthierville test embankment[J]. International Journal of Numerical and Analytical Methods in Geomechanics, 2000, 24: 491-508.
    [15]
    NASH D F T, RYDE S J. Modelling consolidation accelerated by vertical drains in clays subject to creep[J]. Géotechnique, 2001, 51(3): 257-273.
    [16]
    HU Y Y, ZHOU W H, CAI Y Q.Large-strain elastic viscoplastic consolidation analysis of very soft clay layers with vertical drains under preloading[J]. Canadian Geotechnical Journal, 2014, 51(2): 144-157.
    [17]
    HOULSBY G T, PUZRIN A M.Principles of hyperplasticity[M]. London: Springer, 2006: 211-239.
  • Cited by

    Periodical cited type(4)

    1. 王宇,茆苏徽. 岩石蠕变模型的二次开发. 价值工程. 2025(01): 65-67 .
    2. 刘楚佳,刘晓辉,张旭,王悠. 改进的非定常Maxwell岩石蠕变模型及参数识别. 中国农村水利水电. 2025(01): 221-226 .
    3. 胡亚元,丁盼. 基于等效时间的双屈服面三维流变模型. 岩土工程学报. 2020(01): 53-62 . 本站查看
    4. 张亮亮,王晓健. 岩石黏弹塑性损伤蠕变模型研究. 岩土工程学报. 2020(06): 1085-1092 . 本站查看

    Other cited types(1)

Catalog

    Article views (312) PDF downloads (142) Cited by(5)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return