• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHANG Liang-liang, WANG Xiao-jian. Viscoelastic-plastic damage creep model for rock[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(6): 1085-1092. DOI: 10.11779/CJGE202006012
Citation: ZHANG Liang-liang, WANG Xiao-jian. Viscoelastic-plastic damage creep model for rock[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(6): 1085-1092. DOI: 10.11779/CJGE202006012

Viscoelastic-plastic damage creep model for rock

More Information
  • Received Date: September 04, 2019
  • Available Online: December 07, 2022
  • Based on the classical element model, the nonlinear element and the creep damage are introduced to solve the problem that the classical element model cannot describe the non-linear characteristics of rock during the whole compressive creep process. Firstly, the inaccuracies of these methods in the identification of model parameters, the establishment of equation for damage creep and the selection of yield conditions are analyzed. After that, an elastic body, a non-linear Kelvin body, a viscous body and a damage viscoplastic body are constructed based on the non-linear rheological theory and damage theory, and the four bodies are connected in series to establish a damage creep model which can simultaneously describe the instantaneous elastic strain, the non-linear viscoelastic strain, the viscous strain and the non-linear viscoplastic strain of rock. The one-dimensional and three-dimensional differential damage constitutive equations for rock under constant stress are derived, and the equation for damage creep is obtained according to the superposition principle. Considering the characteristics of creep curve, a simple and feasible identification method for model parameters is given. Finally, the applicability of the model is verified by comparing the creep test curve of sandstone under uniaxial and triaxial compressions with the theoretical curve and prediction curve. The results show that the proposed model fits well the test data. The viscoelastic-plastic damage creep model can accurately reflect the non-linear characteristics of creep curves in attenuation and steady stages and describe the accelerated creep characteristics of rocks in high stress state.
  • [1]
    孙钧. 岩石流变力学及其工程应用研究的若干进展[J]. 岩石力学与工程学报, 2007, 26(6): 1081-1106. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200706001.htm

    SUN Jun. Rock rheological mechanics and its advance in engineering applications[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(6): 1081-1106. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200706001.htm
    [2]
    张亮亮, 王晓健. 基于广义伯格斯模型的岩石损伤蠕变模型[J]. 中国安全科学学报, 2019, 29(1): 125-131. https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK201901021.htm

    ZHANG Liang-liang, WANG Xiao-jian. Rock damage creep model based on generalized Burgers model[J]. China Safety Science Journal, 2019, 29(1): 125-131. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK201901021.htm
    [3]
    徐卫亚, 杨圣奇, 褚卫江. 岩石非线性黏弹塑性流变模型(河海模型)及其应用[J]. 岩石力学与工程学报, 2006, 25(3): 433-447. doi: 10.3321/j.issn:1000-6915.2006.03.001

    XU Wei-ya, YANG Sheng-qi, CHU Wei-jiang. Nonlinear viscoelasto-plastic rheological model (Hohai model) of rock and its engineering applications[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(3): 433-447. (in Chinese) doi: 10.3321/j.issn:1000-6915.2006.03.001
    [4]
    阎岩, 王思敬, 王恩志. 基于西原模型的变参数蠕变方程[J]. 岩土力学, 2010, 31(10): 3025-3035. doi: 10.3969/j.issn.1000-7598.2010.10.001

    YAN Yan, WANG Si-jing, WANG En-zhi. Creep equation of variable parameters based on Nishihara model[J]. Rock and Soil Mechanics, 2010, 31(10): 3025-3035. (in Chinese) doi: 10.3969/j.issn.1000-7598.2010.10.001
    [5]
    ZHAO Y L, WANG Y X, WANG W J, et al. Modeling of non-linear rheological behavior of hard rock using triaxial rheological experiment[J]. International Journal of Rock Mechanics & Mining Sciences, 2017, 93: 66-75.
    [6]
    LIU H Z, XIE H Q, HE J D, et al. Nonlinear creep damage constitutive model for soft rocks[J]. Mechanics of Time- dependent Materials, 2017, 21(1): 73-96. doi: 10.1007/s11043-016-9319-7
    [7]
    朱昌星, 阮怀宁, 朱珍德, 等. 岩石非线性蠕变损伤模型的研究[J]. 岩土工程学报, 2008, 30(10): 1510-1513. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200810019.htm

    ZHU Chang-xing, RUAN Huai-ning, ZHU Zhen-de, et al. Non-linear rheological damage model of rock[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(10): 1510-1513. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200810019.htm
    [8]
    FOSSUM A F, BRODSKY N S, CHAN K S, et al. Experimental evaluation of a constitutive model for inelastic flow and damage evolution in solids subjected to triaxial compression[C]//The 34th US Symposium on Rock Mechanics (USRMS), 1993, Madison.
    [9]
    CAO P, WEN Y D, WANG Y X, et al. Study on nonlinear damage creep constitutive model for high-stress soft rock[J]. Environmental Earth Sciences, 2016, 75(10): 900-908. doi: 10.1007/s12665-016-5699-x
    [10]
    KACHANOV M. Effective elastic properties of cracked solids: critical review of basic concepts[J]. Applied Mechanics Reviews, 1992, 45(8): 304-335. doi: 10.1115/1.3119761
    [11]
    WANG J B, LIU X R, SONG Z P, et al. An improved Maxwell creep model for salt rock[J]. Geotechnical Mechanics and Engineering, 2015, 9(4): 499-511.
    [12]
    袁海平, 曹平, 许万忠, 等. 岩石粘弹塑性本构关系及改进的Burgers蠕变模型[J]. 岩土工程学报, 2006, 28(6): 796-799. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200606024.htm

    YUAN Hai-ping, CAO Ping, XU Wan-zhong, et al. Visco-elastop-lastic constitutive relationship of rock and modified Burgers creep model[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(6): 796-799. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200606024.htm
    [13]
    胡亚元. 剪切双曲线型等效时间流变模型[J]. 岩土工程学报, 2018, 40(8): 1549-1555. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201808026.htm

    HU Ya-yuan. Shear hyperbolic-type equivalent-time rheological model[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(8): 1549-1555. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201808026.htm
    [14]
    齐亚静, 姜清辉, 王志俭, 等. 改进西原模型的三维蠕变本构方程及其参数辨识[J]. 岩石力学与工程学报, 2012, 31(2): 347-355. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201202017.htm

    QI Ya-jing, JIANG Qing-hui, WANG Zhi-jian, et al. 3D creep constitutive equation of modified Nishihara model and its parameters identification[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(2): 347-355. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201202017.htm
    [15]
    PERZYNA P. Fundamental problems in viscoplasticity[J]. Advance in Applied Mechanics, 1966, 9(9): 353-377.
    [16]
    Al-RUB R K A, DARABI M K, KIM S M, et al. Mechanistic-based constitutive modeling of oxidative aging in aging-susceptible materials and its effect on the damage potential of asphalt concrete[J]. Construction and Building Materials, 2013, 41: 439-454.
    [17]
    NAZARY Moghadam S, MIRZABOZORG H, NOORZAD A. Modeling time-dependent behavior of gas caverns in rock salt considering creep, dilatancy and failure[J]. Tunnelling and Underground Space Technology, 2013, 33: 171-185.
    [18]
    单仁亮, 白瑶, 孙鹏飞, 等. 冻结层状红砂岩三轴蠕变特性及本构模型研究[J]. 中国矿业大学学报, 2019, 48(1): 12-22. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201901002.htm

    SHAN Ren-liang, BAI Yao, SUN Peng-fei, et al. Study of triaxial creep mechanical properties and constitutive model of frozen stratified red sandstone[J]. Journal of China University of Mining & Technology, 2019, 48(1): 12-22. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201901002.htm
    [19]
    李青麒. 软岩蠕变参数的曲线拟合计算方法[J]. 岩石力学与工程学报, 1998, 17(5): 559-564. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX805.011.htm

    LI Qing-qi. Curve fitting method for creep parameter of soft rock[J]. Chinese Journal of Rock Mechanics and Engineering, 1998, 17(5): 559-564. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX805.011.htm
    [20]
    刘东燕, 谢林杰, 庹晓峰, 等. 不同围压作用下砂岩蠕变特性及非线性黏弹塑性模型研究[J]. 岩石力学与工程学报, 2017, 36(增刊2): 3705-3712. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2017S2001.htm

    LIU Dong-yan, XIE Lin-jie, TUO Xiao-feng, et al. Creep properties of sandstone under different confining pressures and research on a nonlinear viscoelasto-plastic creep model[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(S2): 3705-3712. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2017S2001.htm
  • Related Articles

    [1]ZHAO Futang, WU Qixin, ZHENG Junjie, ZHENG Yewei. Generalized shear strain-based model for development of excess pore water pressure in saturated sand under anisotropic consolidation[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(2): 315-323. DOI: 10.11779/CJGE20231122
    [2]TANG Zhao-guang, WANG Yong-zhi, WANG Meng-wei, SUN Rui, LIU Yuan-peng, YANG yang. Incremental model for pore water pressure and its applicability in centrifuge modelling[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S2): 25-29. DOI: 10.11779/CJGE2022S2006
    [3]WANG Zhi-hua, HE Jian, GAO Hong-mei, WANG Bing-hui, SHEN Ji-rong. Dynamic pore water pressure model for liquefiable soils based on theory of thixotropic fluid[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(12): 2332-2340. DOI: 10.11779/CJGE201812023
    [4]WANG Xiang-ying, LIU Han-long, JIANG Qiang, CHEN Yu-min. Field tests on response of excess pore water pressures of liquefaction resistant rigid-drainage pile[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(4): 645-651. DOI: 10.11779/CJGE201704008
    [5]CAO Zhen-zhong, LIU Hui-da, YUAN Xiao-ming. Liquefaction characteristics and mechanism of gravelly soils[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(7): 1165-1174. DOI: 10.11779/CJGE201607001
    [6]ZHOU En-quan, WANG Zhi-hua, CHEN Guo-xing, LÜ Cong. Constitutive model for fluid of post-liquefied sand[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(1): 112-118. DOI: 10.11779/CJGE201501013
    [7]WANG Zhi-hua, LÜ Cong, XU Zhen-wei, ZHOU En-quan, CHEN Guo-xing. Thixotropy induced by vibration pore water pressure of saturated sands under cyclic loadings[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(10): 1831-1837. DOI: 10.11779/CJGE201410010
    [8]WANG Jun, CAI Yuan-qiang, GUO Lin, YANG Fang. Pore pressure and strain development of Wenzhou saturated soft soil under cyclic loading by stages[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(7): 1349-1354.
    [9]WANG Zhi-hua, ZHOU En-quan, CHEN Guo-xing. Fluid characteristics dependent on excess pore water pressure of saturated sand after growth of pore pressure[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(3): 528-533.
    [10]CHEN Guoxing, LIU Xuezhu. Study on dynamic pore water pressure in silty clay interbedded with fine sand of Nanjing[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(1): 79-82.
  • Cited by

    Periodical cited type(4)

    1. 施静怡,吴能森,刘强. 静压桩在成层地基中挤土效应的可视化研究. 河南城建学院学报. 2024(02): 20-26 .
    2. 胡文强,周航,刘汉龙. XCC桩群桩沉桩挤土效应透明土模型试验研究. 土木与环境工程学报(中英文). 2024(06): 107-115 .
    3. 丁雪涛,潘殿琦,王明威. CPT阻力受土层界面效应影响的数值模拟. 实验室研究与探索. 2023(05): 26-31+36 .
    4. 田波,王昊武,权磊,谢晋德,朱旭伟. 基于CPT试验的多年冻土区路表变形风险评价. 公路交通科技. 2023(09): 1-7+53 .

    Other cited types(3)

Catalog

    Article views (481) PDF downloads (429) Cited by(7)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return