• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
WANG Mao-hua, CHI Shi-chun, ZHOU Xiong-xiong. Modal identification of high earth-rock dams based on seismic records and SSI method[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(7): 1279-1287. DOI: 10.11779/CJGE202107013
Citation: WANG Mao-hua, CHI Shi-chun, ZHOU Xiong-xiong. Modal identification of high earth-rock dams based on seismic records and SSI method[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(7): 1279-1287. DOI: 10.11779/CJGE202107013

Modal identification of high earth-rock dams based on seismic records and SSI method

More Information
  • Received Date: June 01, 2020
  • Available Online: December 02, 2022
  • Using the measured seismic records to identify the modal parameters of high earth-rock dams is a feasible way to study the dynamic characteristics of dams. Constructing the covariance-driven stochastic subspace identification (SSI) based on the data recorded at the monitoring points of a dam during the earthquake and the stable graph by establishing multiple Hankel matrices with different dimensions can effectively eliminate false modes. The hierarchical clustering can effectively identify the natural frequency and damping ratio of the dam, and realize the automatic identification of physical modal parameters, avoiding the errors introduced by human selection. The effectiveness and accuracy of the proposed SSI method for seismic data analysis are verified by numerical examples. It is applied to the identification of modal parameters of Nuozhadu core-wall rockfill dam, and the reasonable frequency and damping ratio are obtained, indicating that the method can identify the modal parameters of the dam well and has a good engineering application, and it can provide a certain basis and reference for the finite element analysis of seismic safety of high earth-rock dams.
  • [1]
    李红军, 朱凯斌, 赵剑明, 等. 基于设定地震场地相关反应谱的高土石坝抗震安全评价[J]. 岩土工程学报, 2019, 41(5): 934-941. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201905021.htm

    LI Hong-jun, ZHU Kai-bin, ZHAO Jian-ming, et al. Safety evaluation of high rock-fill dams subjected to earthquakes based on the site-related response spectra[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(5): 934-941. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201905021.htm
    [2]
    朱亚林, 孔宪京, 邹德高, 等. 河谷地形对高土石坝动力反应特性影响的分析[J]. 岩土工程学报, 2012, 34(9): 1590-1597. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201209008.htm

    ZHU Ya-lin, KONG Xian-jing, ZOU De-gao, et al. Effect of valley topography on dynamic response properties of high earth-rockfill dams[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(9): 1590-1597. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201209008.htm
    [3]
    CHENG L, ZHENG D J. The identification of a dam's modal parameters under random support excitation based on the Hankel matrix joint approximate diagonalization technique[J]. Mechanical Systems and Signal Processing, 2014, 42(1/2): 42-57.
    [4]
    王茂华, 迟世春, 刘振平. 考虑相互作用影响的堆石料动力参数反演[J]. 岩土工程学报, 2019, 41(10): 1967-1976. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201910029.htm

    WANG Mao-hua, CHI Shi-chun, LIU Zhen-ping. Back analysis of dynamic parameters of rock-fill materials considering interaction effects[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(10): 1967-1976. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201910029.htm
    [5]
    ALVES S W, HALL J F. System identification of a concrete arch dam and calibration of its finite element model[J]. Earthquake Engineering and Structural Dynamics, 2006, 35(11): 1321-1337. doi: 10.1002/eqe.575
    [6]
    LOH C H, WU T C. System identification of Fei-Tsui arch dam from forced vibration and seismic response data[J]. Journal of Earthquake Engineering, 2000, 4(4): 511-537.
    [7]
    LOH C H, WU T S. Identification of Fei-Tsui arch dam from both ambient and seismic response data[J]. Soil Dynamics and Earthquake Engineering, 1996, 15(7): 465-483. doi: 10.1016/0267-7261(96)00016-4
    [8]
    YANG J, JIN F, WANG J T, et al. System identification and modal analysis of an arch dam based on earthquake response records[J]. Soil Dynamics and Earthquake Engineering, 2017, 92: 109-121. doi: 10.1016/j.soildyn.2016.09.039
    [9]
    李帅, 潘坚文, 罗广衡, 等. 溪洛渡拱坝模态参数识别[J]. 水力发电学报, 2020, 39(3): 86-95. https://www.cnki.com.cn/Article/CJFDTOTAL-SFXB202003009.htm

    LI Shuai, PAN Jian-wen, LUO Guang-heng, et al. Modal parameter identification for Xiluodu arch dam[J]. Journal of Hydroelectric Engineering, 2020, 39(3): 86-95. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SFXB202003009.htm
    [10]
    谯雯, 罗佩, 刘国明. 基于自然激励技术和HHT变换的重力坝模态分析[J]. 水利学报, 2014, 45(8): 958-966. doi: 10.13243/j.cnki.slxb.2014.08.009

    QIAO Wen, LUO Pei, LIU Guo-ming. Modal parameter identification of gravity dam based on natural excitation technique and Hilbert-Huang transform[J]. Journal of Hydraulic Engineering, 2014, 45(8): 958-966. (in Chinese) doi: 10.13243/j.cnki.slxb.2014.08.009
    [11]
    何蕴龙, 刘俊林, 熊堃. 汶川地震冶勒大坝动力响应规律分析[J]. 四川大学学报(工程科学版), 2009, 41(3): 157-164. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH200903026.htm

    HE Yun-long, LIU Jun-lin, XIONG Kun. Seismic response of Yele dam during Wenchuan earthquake[J]. Journal of Sichuan University (Engineering Science Edition), 2009, 41(3): 157-164. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH200903026.htm
    [12]
    孔宪京, 周扬, 邹德高, 等. 汶川地震余震记录及紫坪铺面板堆石坝余震反应研究[J]. 岩土工程学报, 2011, 33(5): 673-678. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201105003.htm

    KONG Xian-jing, ZHOU Yang, ZOU De-gao, et al. Aftershock records of Wenchuan Earthquake and seismic response of Zipingpu Concrete Face Rock-fill Dam[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(5): 673-678. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201105003.htm
    [13]
    苗君, 何蕴龙, 曹学兴, 等. 芦山地震冶勒大坝强震监测资料分析[J]. 岩土力学, 2015, 36(1): 225-232, 256. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201501031.htm

    MIAO Jun, HE Yun-long, CAO Xue-xing, et al. Analysis of strong motion seismograph data at rockfill Yele dam during Lushan earthquake[J]. Rock and Soil Mechanics, 2015, 36(1): 225-232, 256. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201501031.htm
    [14]
    刘振平, 迟世春, 赵显波, 等. 鲤鱼潭大坝坝料动力参数反演[J]. 岩土工程学报, 2015, 37(4): 761-768. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201504029.htm

    LIU Zhen-ping, CHI Shi-chun, ZHAO Xian-bo, et al. Back analysis of dynamic parameters of Liyutan dam materials[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(4): 761-768. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201504029.htm
    [15]
    王茂华, 迟世春, 相彪, 等. 弱震情况下高土石坝坝料动力参数反演分析[J]. 岩土工程学报, 2020, 42(2): 289-298. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202002014.htm

    WANG Mao-hua, CHI Shi-chun, XIANG Biao, et al. Back analysis of dynamic parameters of high earth-rock dam materials under weak earthquakes[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(2): 289-298. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202002014.htm
    [16]
    李平, 薄景山, 李孝波, 等. 安宁河河谷及邛海地区土层场地对地震动的放大作用[J]. 岩土工程学报, 2016, 38(2): 362-369. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201602026.htm

    LI Ping, BO Jing-shan, LI Xiao-bo, et al. Amplification effect of soil sites on ground motion in Anning River valley and Qionghai Lake area[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(2): 362-369. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201602026.htm
    [17]
    章国稳. 环境激励下结构模态参数自动识别与算法优化[D]. 重庆: 重庆大学, 2012.

    ZHANG Guo-wen. Modal Parameter Automatic Identification for Structures Under Ambient Excitation and Algorithm Optimization[D]. Chongqing: Chongqing University, 2012. (in Chinese)
    [18]
    REYNDERS E, ROECK G D. Reference-based combined deterministic-stochastic subspace identification for experimental and operational modal analysis[J]. Mechanical Systems and Signal Processing, 2008, 22(3): 617-637.
    [19]
    ZHANG L M, WANG T, TAMURA Y. A frequency- spatial domain decomposition (FSDD) method for operational modal analysis[J]. Mechanical Systems and Signal Processing, 2010, 24(5): 1227-1239.
    [20]
    张永祥, 刘心, 褚志刚, 等. 基于随机子空间法的模态参数自动提取[J]. 机械工程学报, 2018, 54(9): 187-194. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201809023.htm

    ZHANG Yong-xiang, LIU Xin, CHU Zhi-gang, et al. Autonomous modal parameter extraction based on stochastic subspace identification[J]. Journal of Mechanical Engineering, 2018, 54(9): 187-194. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201809023.htm
    [21]
    汤宝平, 章国稳, 陈卓. 基于谱系聚类的随机子空间模态参数自动识别[J]. 振动与冲击, 2012, 31(10): 92-96. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201210021.htm

    TANG Bao-ping, ZHANG Guo-wen, CHEN Zhuo. Automatic stochastic subspace identification of modal parameters based on hierarchical clustering method[J]. Journal of Vibration and Shock, 2012, 31(10): 92-96. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201210021.htm
    [22]
    MAGALHÃES F, CUNHA Á, CAETANO E. Online automatic identification of the modal parameters of a long span arch bridge[J]. Mechanical Systems and Signal Processing, 2009, 23(2): 316-329.
    [23]
    PEETERS B, DE ROECK G. Reference-based stochastic subspace identification for output-only modal analysis[J]. Mechanical Systems and Signal Processing, 1999, 13(6): 855-878.
    [24]
    BAKIR P G. Automation of the stabilization diagrams for subspace based system identification[J]. Expert Systems with Applications, 2011, 38(12): 14390-14397.
    [25]
    HONG A L, UBERTINI F, BETTI R. New stochastic subspace approach for system identification and its application to long-span bridges[J]. Journal of Engineering Mechanics, 2013, 139(6): 724-736.
    [26]
    大崎顺彦. 振动理论[M]. 谢礼立,译. 北京: 地震出版社, 1990.

    AKIHIKO O. Vibration Theory[M]. XIE Li-yi, trans. Beijing: Seismological Press, 1990. (in Chinese)
    [27]
    徐斌, 邹德高, 孔宪京, 等. 高土石坝坝坡地震稳定分析研究[J]. 岩土工程学报, 2012, 34(1): 139-144. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201201015.htm

    XU Bin, ZOU De-gao, KONG Xian-jing, et al. Seismic stability of slopes of high rockfiU dams[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(1): 139-144. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201201015.htm
    [28]
    孔宪京, 娄树莲, 邹德高, 等. 筑坝堆石料的等效动剪切模量与等效阻尼比[J]. 水利学报, 2001, 32(8): 20-25. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB200108003.htm

    KONG Xian-jing, LOU Shu-lian, ZOU De-gao, et al. The equivalent dynamic shear modulus and equivalent damping ratio of the rockfill for dam[J]. Journal of Hydraulic Engineering, 2001, 32(8): 20-25. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB200108003.htm
    [29]
    中国水电顾问集团昆明勘测设计研究院. 200 m级以上高心墙堆石坝坝料特性及坝料设计准则研究[R]. 昆明: 中国水电顾问集团昆明勘测设计研究院, 2010.

    Hydro China Kunming Engineering Corporation. Study on Dam Material Characteristics and Design Criteria of Dam Materials for High Core Wall Rockfill Dam Above 200 m[R]. Kunming: Hydro China Kunming Engineering Corporation, 2010. (in Chinese)
    [30]
    楚金旺, 朱晟, 黄亚梅. 基于实际震害的土石坝永久变形估算[J]. 中国水利水电科学研究院学报, 2017, 15(6): 409-417. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGSX201706001.htm

    CHU Jin-wang, ZHU Sheng, HUANG Ya-mei. Estimation of earthquake-induced permanent deformation for earth dam based on seismic damage[J]. Journal of China Institute of Water Resources and Hydropower Research, 2017, 15(6): 409-417. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGSX201706001.htm
    [31]
    毛雯娟. 强震区高土石坝三维动力反应分析[D]. 大连: 大连理工大学, 2008.

    MAO Wen-juan. 3-D Dynamic Analysis of High Rockfill Dam in Meizoseismal Area[D]. Dalian: Dalian University of Technology, 2008. (in Chinese)
    [32]
    杨玉生, 刘小生, 刘启旺, 等. 双江口心墙堆石坝动力特性的振动台模型试验研究[J]. 水力发电学报, 2011, 30(1): 114-119. https://www.cnki.com.cn/Article/CJFDTOTAL-SFXB201101020.htm

    YANG Yu-sheng, LIU Xiao-sheng, LIU Qi-wang, et al. Shaking table model tests on dynamic characteristics of Shuangjiangkou high earth-rockfill dam[J]. Journal of Hydroelectric Engineering, 2011, 30(1): 114-119. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SFXB201101020.htm
  • Related Articles

    [1]ZHOU Luming, ZHU Zhende, XIE Xinghua, LÜ Maolin. Non-Fourier law-based peridynamic thermo-mechanical coupling model and simulation of thermal damage and fracture in granite[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(11): 2391-2400. DOI: 10.11779/CJGE20230769
    [2]ZHONG Zilan, FENG Liqian, SHI Yuebo, WEN Weiping, ZHAO Mi. Seismic damage assessment of subway station subjected to mainshock-aftershock sequences[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(8): 1586-1594. DOI: 10.11779/CJGE20220788
    [3]ZHOU Yan-guo, SHEN Tao, WANG Yue, DING Hai-jun. Post-earthquake evolution of small-strain shear stiffness at liquefiable deposit in Christchurch[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(8): 1411-1417. DOI: 10.11779/CJGE202008005
    [4]HU Ya-yuan. Shear hyperbolic-type equivalent-time rheological model[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(8): 1549-1555. DOI: 10.11779/CJGE201808023
    [5]CAO Yong, KONG Ling-wei, YANG Ai-wu. Characteristics of stiffness degradation and strength effect of dynamic damage of structured soft soils[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 236-240.
    [6]LAI Xiao-ling, YE Wei-min, WANG Shi-mei. Experimental study on unsaturated creep characteristics of landslide soils[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(2): 286-293.
    [7]ZHANG Jiupeng, HUANG Xiaoming, MA Tao. Damage-creep characteristics and model of asphalt mixture[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(12): 1867-1871.
    [8]ZHU Changxing, RUAN Huaining, ZHU Zhende, LUO Runlin. Non-linear rheological damage model of rock[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(10): 1510-1513.
    [9]XU Hongfa, LU Hongbiao, QIAN Qihu. Creep damage effects of pulling grouting anchor in soil[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(1): 61-63.
    [10]GE Xiurun, REN Jianxi, PU Yibin, MA Wei, ZHU Yuanlin. Primary study of CT real-time testing of fatigue meso-damage propagation law of rock[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(2): 191-195.
  • Cited by

    Periodical cited type(9)

    1. 辛灏辉,高卿林,冯鹏,刘玉擎. 桥梁结构中E-GFRP单向板徐变性能与双尺度均匀化数值评估. 工程力学. 2024(08): 93-106 .
    2. 熊壮,杨学祥,范济敏. 充气膨胀控制锚杆的蠕变试验. 科学技术与工程. 2024(26): 11385-11392 .
    3. 陈文杰,叶毅荣. 玻璃纤维筋抗浮锚杆在某工程中的抗拔试验研究与应用. 广东建材. 2024(10): 76-79 .
    4. 刘鹏,刘军,郑仔弟,郑辉,白雪. 基于GFRP筋与钢绞线复合式锚杆支护施工的关键技术研究. 市政技术. 2023(08): 245-252 .
    5. 井德胜,白晓宇,王海刚,张明义,李翠翠,焦玉进,闫君,王忠胜. 玻璃纤维增强聚合物锚杆蠕变性能研究进展. 复合材料科学与工程. 2022(02): 119-128 .
    6. 白晓宇,井德胜,张明义,涂兵雄,魏国,吕承禄,黄春霞. 全长黏结非金属抗浮锚杆体系设计方法研究. 中南大学学报(自然科学版). 2022(08): 3168-3177 .
    7. 井德胜,白晓宇,刘超,刘永江,张明义,黄永峰. 抗浮锚杆荷载-位移特性及极限承载力预测. 科学技术与工程. 2021(22): 9570-9576 .
    8. 井德胜,白晓宇,冯志威,张明义,李翠翠. 玄武岩纤维增强聚合物锚杆用于地下结构抗浮的可行性研究. 材料导报. 2021(19): 19223-19229 .
    9. 白晓宇,刘雪颖,张明义,井德胜,郑晨. GFRP筋及钢筋抗浮锚杆承载特性现场试验及荷载-位移模型. 复合材料学报. 2021(12): 4138-4149 .

    Other cited types(3)

Catalog

    Article views (317) PDF downloads (102) Cited by(12)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return