Citation: | WANG En-liang, REN Zhi-feng, HAN Hong-wei, TIAN Yu, HU Sheng-bo, LIU Xing-chao. Experimental study on uniaxial compressive strength of ultra-low temperature frozen clay[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(10): 1851-1860. DOI: 10.11779/CJGE202110011 |
[1] |
周洁, 李泽垚, 万鹏, 等. 组合地层渗流对人工地层冻结法及周围工程环境效应的影响[J]. 岩土工程学报, 2021, 43(3): 471-480. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202103013.htm
ZHOU Jie, LI Ze-yao, WAN Peng, et al. Influence of combined stratum seepage on artificial stratum freezing method and surrounding engineering environment effect[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(3): 471-480.(in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202103013.htm
|
[2] |
MAURO A, NORMINO G, CAVUOTO F, et al. Modeling artificial ground freezing for construction of two tunnels of a Metro Station in Napoli (Italy)[J]. Energies, 2020, 13(5): 1272. doi: 10.3390/en13051272
|
[3] |
TOUNSI H, ROUABHI A, TIJANI M, et al. Thermo- hydro-mechanical modeling of artificial ground freezing: application in mining engineering[J]. Rock Mechanics and Rock Engineering, 2019, 52(10): 3889-3907. doi: 10.1007/s00603-019-01786-9
|
[4] |
王建平, 刘伟民, 王恒. 我国人工地层冻结技术的现状与发展[J]. 建井技术, 2019, 40(4): 1-4, 25. https://www.cnki.com.cn/Article/CJFDTOTAL-JJJS201904002.htm
WANG Jian-ping, LIU Wei-min, WANG Heng. Present situation and development of artificial formation freezing technology in China[J]. Mine Construction Technology, 2019, 40(4): 1-4, 25. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JJJS201904002.htm
|
[5] |
陈瑞杰, 程国栋, 李述训, 等. 人工地层冻结应用研究进展和展望[J]. 岩土工程学报, 2000, 22(1): 40-44. doi: 10.3321/j.issn:1000-4548.2000.01.007
CHEN Ru-ijie, CHENG Guo-dong, LI Shu-xun, et al. Research progress and prospect of artificial ground freezing[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(1): 40-44. (in Chinese) doi: 10.3321/j.issn:1000-4548.2000.01.007
|
[6] |
张基伟, 刘书杰, 张松, 等. 富水砂层冻结壁形成过程声场响应特征研究[J]. 岩土工程学报, 2020, 42(12): 2230-2239. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202012012.htm
ZHANG Ji-wei, LIU Shu-jie, ZHANG Song, et al. Response characteristics of sound fields of stratum frozen wall of water-rich sand during developing process[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(12): 2230-2239. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202012012.htm
|
[7] |
任韶然, 范志坤, 张亮, 等. 液氮对煤岩的冷冲击作用机制及试验研究[J]. 岩石力学与工程学报, 2013, 32(增刊2): 3790-3794. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2013S2101.htm
REN Shao-ran, FAN Zhi-kun, ZHANG Li-ang, et al. Cold shock mechanism and experimental study of liquid nitrogen on coal and rock[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(S2): 3790-3794. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2013S2101.htm
|
[8] |
马芹永. 人工冻土动态力学特性研究现状及意义[J]. 岩土力学, 2009, 30(增刊1): 10-14. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2009S1002.htm
MA Qin-yong. Research status of dynamic properties of artificial frozen soil and its significance[J]. Rock and Soil Mechanics, 2009, 30(S1): 10-14. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2009S1002.htm
|
[9] |
CHU Y, SUN H, ZHANG D, et al. Nuclear magnetic resonance study of the influence of the liquid nitrogen freeze-thaw process on the pore structure of anthracite coal[J]. Energy Science and Engineering, 2020, 8(4): 1681-1692.
|
[10] |
郑晓静. 关于极端力学[J]. 力学学报, 2019, 51(4): 1266-1272. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201904028.htm
ZHENG Xiao-jing. Extreme mechanics[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(4): 1266-1272. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201904028.htm
|
[11] |
张楠, 李景芳, 张志明, 等. 超低温环境混凝土研究与应用综述[J]. 混凝土, 2012(12): 27-29. https://www.cnki.com.cn/Article/CJFDTOTAL-HLTF201212011.htm
ZHANG Nan, LI Jing-fang, ZHANG Zhi-ming, et al. State-of- art review on research and application of concrete at very low temperature[J]. Concrete, 2012(12): 27-29. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HLTF201212011.htm
|
[12] |
时旭东, 李亚强, 李俊林, 等. 不同超低温温度区间冻融循环作用混凝土受压强度试验研究[J]. 工程力学, 2020, 37(4): 153-164. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX202004018.htm
SHI Xu-dong, LI Ya-qiang, LI Jun-lin, et al. Experimental study on the compressive strength of concrete undergoing freeze-thaw cycle actions with different ultralow temperature ranges[J]. Engineering Mechanics, 2020, 37(4): 153-164. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX202004018.htm
|
[13] |
ESMAEILI-FALAK M, KATEBI H, VADIATI M, et al. Predicting triaxial compressive strength and Young's modulus of frozen sand using artificial intelligence methods[J]. Journal of Cold Regions Engineering, 2019, 33(3): 04019007.
|
[14] |
KIM S Y, HONG W T, HONG S S, et al. Unfrozen water content and unconfined compressive strength of frozen soils according to degree of saturations and silt fractions[J]. Journal of the Korean Geotechnical Society, 2016, 32(12): 59-67.
|
[15] |
GÜLLÜ H, KHUDIR A. Effect of freeze-thaw cycles on unconfined compressive strength of fine-grained soil treated with jute fiber, steel fiber and lime[J]. Cold Regions Science and Technology, 2014(106/107): 55-65.
|
[16] |
陈鑫, 张泽, 李东庆, 等. 软弱夹层对水泥土单轴压缩影响研究[J]. 岩石力学与工程学报, 2020, 39(2): 398-412. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202002018.htm
CHEN Xin, ZHANG Ze, LI Dong-qing, et al. Study on the influence of weak interlayer on uniaxial compression behaviors of cement soils[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(2): 398-412. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202002018.htm
|
[17] |
张遂, 匡航, 靳占英, 等. 高含水率冻粉黏土应力-应变曲线特性的试验研究[J]. 水文地质工程地质, 2020, 47(5): 116-124.
ZHANG Sui, KUANG Hang, JIN Zhan-ying, et al. An experimental study of the stress-strain characteristics of frozen silty clay with high moisture content[J]. Hydrogeology and Engineering Geology, 2020, 47(5): 116-124. (in Chinese)
|
[18] |
陈鑫, 张泽, 李东庆. 尺寸和加载速率对冻结水泥土单轴压缩影响[J]. 水文地质工程地质, 2019, 46(6): 74-82. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201906011.htm
CHEN Xin, ZHANG Ze, LI Dong-qing. Effect of size and loading rate on the uniaxial compression characteristics of frozen cement soil[J]. Hydrogeology & Engineering Geology, 2019, 46(6): 74-82. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201906011.htm
|
[19] |
杜海民, 张淑娟, 马巍. 高含冰(水)量冻土的单轴抗压强度变化特性研究[J]. 冰川冻土, 2014, 36(5): 1213-1219. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201405019.htm
DU Hai-min, ZHANG Shu-juan, MA Wei. Study of the uniaxial compressive strength characteristics of frozen soil with high ice /water content[J]. Journal of Glaciology and Geocryology, 2014, 36(5): 1213-1219. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201405019.htm
|
[20] |
黄星, 李东庆, 明锋, 等. 冻土的单轴抗压、抗拉强度特性试验研究[J]. 冰川冻土, 2016, 38(5): 1346-1352. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201605020.htm
HUANG Xing, LI Dong-qing, MING Feng, et al. Experimental study of the compressive and tensile strengths of artificial frozen soil[J]. Journal of Glaciology and Geocryology, 2016, 38(5): 1346-1352. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201605020.htm
|
[21] |
于长一, 刘爱民, 郭炳川, 等. 冻土不同拉伸试验强度差异性研究[J]. 岩土工程学报, 2019, 41(增刊2): 157-160. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2019S2041.htm
YU Chang-yi, LIU Ai-min, GUO Bing-chuan, et al. Different tensile tests on difference of strength of frozen soils[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S2): 157-160. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2019S2041.htm
|
[22] |
付伟, 汪稔, 胡明鉴, 等. 不同温度下冻土单轴抗压强度与电阻率关系研究[J]. 岩土力学, 2009, 30(1): 73-78. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200901018.htm
FU Wei, WANG Ren, HU Ming-jian, et al. Study of relationship between uniaxial compressive strength and electrical resistivity of frozen soil under different temperatures[J]. Rock and Soil Mechanics, 2009, 30(1): 73-78. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200901018.htm
|
[23] |
姚兆明, 张雯, 郭梦圆. 考虑温度效应冻结黏土内变量蠕变模型分析[J]. 长江科学院院报, 2020, 37(12): 81-85, 91. https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB202012016.htm
YAO Zhao-ming, ZHANG Wen, GUO Meng-yuan. An internal-variable creep model for frozen clay based on the temperature[J]. Journal of Yangtze River Scientific Research Institute, 2020, 37(12): 81-85, 91. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB202012016.htm
|
[24] |
陈士威, 林斌. 原状与重塑冻结黏土单轴抗压对比试验[J]. 煤矿安全, 2019, 50(6): 62-66. https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ201906015.htm
CHEN Shi-wei, LIN Bin. Contrast test on uniaxial compression of undisturbed and remolded frozen clay[J]. Safety in Coal Mines, 2019, 50(6): 62-66. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ201906015.htm
|
[25] |
李怀鑫, 林斌, 范登政. 人工冻黏土单轴无侧限抗压强度试验研究[J]. 煤矿安全, 2020, 51(7): 55-60. https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ202007011.htm
LI Huai-xin, LIN Bin, FAN Deng-zheng. Uniaxial compressive strength test on artificially frozen clay[J]. Safety in Coal Mines, 2020, 51(7): 55-60. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ202007011.htm
|
[26] |
VIALOV S S. The strength and creep calculation of the barriers made of frozen soil[J]. Soil Mechanics and Foundation Engineering, 1963, 11(9): 25-26.
|
[27] |
KONDNER R L. Hyperbolic stress-strain response: cohesive soils[J]. Journal of the Soil Mechanics and Foundations Division, 1963, 89(1): 115-143.
|
[28] |
王丽琴, 鹿忠刚, 邵生俊. 岩土体复合幂-指数非线性模型[J]. 岩石力学与工程学报, 2017, 36(5): 1269-1278. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201705022.htm
WANG Li-qin, LU Zhong-gang, SHAO Sheng-jun. A composite power exponential nonlinear model of rock and soil[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(5): 1269-1278. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201705022.htm
|
[29] |
朱元林, 张家懿, 彭万巍, 等. 冻土的单轴压缩本构关系[J]. 冰川冻土, 1992, 14(3): 210-217. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT199203002.htm
ZHU Yuan-lin, ZHANG Jia-yi, PENG Wan-wei, et al. Constitutive relations of frozen soil in uniaxial compression[J]. Journal of Glaciology and Geocryology, 1992, 14(3): 210-217. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT199203002.htm
|
[30] |
张雅琴, 杨平, 江汪洋, 等. 含水率及应变速率对冻结粉质黏土强度特性影响[J]. 郑州大学学报(工学版), 2020, 41(3): 79-84. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZGY202003015.htm
ZHANG Ya-qin, YANG Ping, JIANG Wang-yang, et al. Effect of water content and strain rate on the strength characteristics of frozen silty clay[J]. Journal of Zhengzhou University(Engineering Science), 2020, 41(3): 79-84. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZZGY202003015.htm
|
[31] |
杜洋, 唐丽云, 杨柳君, 等. 基于核磁共振下的冻土-结构正融过程界面特性研究[J]. 岩土工程学报, 2019, 41(12): 2316-2322. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201912024.htm
DU Yang, TANG Li-yun, YANG Liu-jun, et al. Interface characteristics of frozen soil-structure thawing process based on nuclear magnetic resonance[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(12): 2316-2322. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201912024.htm
|
[32] |
马巍, 王大雁. 冻土力学[M]. 北京: 科学出版社, 2014.
MA Wei, WANG Da-yan. Frozen Soil Mechanics[M]. Beijing: Science Press, 2014. (in Chinese)
|
[33] |
PITTMAN F, MOHAMMED A, CEY E. Effects of antecedent moisture and macroporosity on infiltration and water flow in frozen soil[J]. Hydrological Processes, 2020, 34(3): 795-809.
|
[34] |
赵晓东, 周国庆. 温度梯度冻土蠕变变形规律和非均质特征[J]. 岩土工程学报, 2014, 36(2): 390-394. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201402021.htm
ZHAO Xiao-dong, ZHOU Guo-qing. Creep deformation and heterogeneous characteristics for frozen soils with thermal gradient[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(2): 390-394. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201402021.htm
|
[1] | YANG Shengqi, JING Xiaojiao. Experimental study on physical and mechanical properties of sandstone after drying-wetting cycles of brine[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(10): 2165-2171. DOI: 10.11779/CJGE20220830 |
[2] | LONG An-fa, CHEN Kai-sheng, JI Yong-xin. Experimental study on wetting-drying cycles of red clay slopes under different rainfall intensities[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S2): 193-196. DOI: 10.11779/CJGE2019S2049 |
[3] | LIU Xin-rong, YUAN Wen, FU Yan, WANG Zi-juan, MIAO Lou-li, XIE Wen-bo. Porosity evolution of sandstone dissolution under wetting and drying cycles[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(3): 527-532. DOI: 10.11779/CJGE201803017 |
[4] | LIU Xin-rong, YUAN Wen, FU Yan, WANG Zi-juan, ZHU Le-wen, XIE Ying-kun. Deterioration rules of shear strength in sandstones under wetting and drying cycles in acid and alkali environment[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(12): 2320-2326. DOI: 10.11779/CJGE201712022 |
[5] | LIU Xin-rong, LI Dong-liang, ZHANG Liang, WANG Zhen. Influence of wetting-drying cycles on mechanical properties and microstructure of shaly sandstone[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(7): 1291-1300. DOI: 10.11779/CJGE201607017 |
[6] | YANG He-ping, WANG Xing-zheng, XIAO Jie. Influence of wetting-drying cycles on strength characteristics of Nanning expansive soils[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(5): 949-954. DOI: 10.11779/CJGE201405020 |
[7] | ZHOU Jian, XU Hong-zhong, HU Wen-jie. Impact of wetting-drying cycle effects on stability of expansive soil slopes[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 152-156. |
[8] | WU Jun-hua, YUAN Jun-ping. Field tests on expansive soil during wetting-drying cycles using large shear apparatus[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk1): 103-107. |
[9] | YE Wei-min, WAN Min, CHEN Bao, CUI Yu-jun, WANG Ju. Micro-structural behaviors of densely compacted GMZ01 bentonite under drying/wetting cycles[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(8): 1173-1177. |
[10] | Influence of repeated drying and wetting cycles on mechanical behaviors of unsaturated soil[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(1). |