• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
WANG En-liang, REN Zhi-feng, HAN Hong-wei, TIAN Yu, HU Sheng-bo, LIU Xing-chao. Experimental study on uniaxial compressive strength of ultra-low temperature frozen clay[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(10): 1851-1860. DOI: 10.11779/CJGE202110011
Citation: WANG En-liang, REN Zhi-feng, HAN Hong-wei, TIAN Yu, HU Sheng-bo, LIU Xing-chao. Experimental study on uniaxial compressive strength of ultra-low temperature frozen clay[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(10): 1851-1860. DOI: 10.11779/CJGE202110011

Experimental study on uniaxial compressive strength of ultra-low temperature frozen clay

More Information
  • Received Date: January 12, 2021
  • Available Online: December 02, 2022
  • Underground transportation, coal mining and other projects often encounter the construction problems of sandy soil crisscross and extremely rich groundwater in soft soil strata. Liquid nitrogen can be used to make the soil in the ultra-low temperature freezing state achieve the purpose of soil stability and reinforcement. Therefore, it is of great significance to explore the compressive strength of the ultra-low temperature frozen soil for the long-term stability and safety of engineering construction. In order to reveal the variation of uniaxial compressive properties of ultra-low temperature frozen clay, the uniaxial compression tests at -10°C to -180℃ are carried out on the soil samples with moisture contents of 17%, 20% and 23%. The results show that when the temperature of frozen soil is higher than -80℃, elastic-plastic failure occurs. When the temperature is lower than -80℃, shows brittle failure. As the temperature decreases, the compressive strength of frozen soil increases linearly first. When the temperature is lower than -80℃, the strength is basically stable, and the temperature is fitted by the compressive strength of frozen soil, and the fitting effect is good. When the moisture content is 17%~23%, the compressive strength of frozen soil increases with the increase of water content, and the elastic modulus of frozen soil increases with the decrease of temperature. Finally, the applicability of four kinds of stress-strain equations to the relationship of the ultra-low temperature frozen soil is compared and analyzed. It is found that the accuracy of the power function and hyperbolic formula to fit the stress-strain relationship of the ultra-low temperature frozen soil is low, and the fitting effect is not ideal. The composite power exponent model has a good fitting accuracy for the elastic-plastic failure process, and can accurately describe the yield and failure of the process, but it is not suitable for the stress-strain curve of brittle failure section, so the model has some limitations. The viscoelastic plastic equation has the best fitting accuracy for the stress-strain relationship of frozen soil. Then the temperature function is introduced to improve the viscoelastic plastic equation, and a composite equation related to the temperature of frozen soil is proposed. The fitting accuracy of the equation is higher, which improves the theory of stress-strain equation of the ultra-low temperature frozen soil, and can provide theoretical reference for practical projects.
  • [1]
    周洁, 李泽垚, 万鹏, 等. 组合地层渗流对人工地层冻结法及周围工程环境效应的影响[J]. 岩土工程学报, 2021, 43(3): 471-480. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202103013.htm

    ZHOU Jie, LI Ze-yao, WAN Peng, et al. Influence of combined stratum seepage on artificial stratum freezing method and surrounding engineering environment effect[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(3): 471-480.(in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202103013.htm
    [2]
    MAURO A, NORMINO G, CAVUOTO F, et al. Modeling artificial ground freezing for construction of two tunnels of a Metro Station in Napoli (Italy)[J]. Energies, 2020, 13(5): 1272. doi: 10.3390/en13051272
    [3]
    TOUNSI H, ROUABHI A, TIJANI M, et al. Thermo- hydro-mechanical modeling of artificial ground freezing: application in mining engineering[J]. Rock Mechanics and Rock Engineering, 2019, 52(10): 3889-3907. doi: 10.1007/s00603-019-01786-9
    [4]
    王建平, 刘伟民, 王恒. 我国人工地层冻结技术的现状与发展[J]. 建井技术, 2019, 40(4): 1-4, 25. https://www.cnki.com.cn/Article/CJFDTOTAL-JJJS201904002.htm

    WANG Jian-ping, LIU Wei-min, WANG Heng. Present situation and development of artificial formation freezing technology in China[J]. Mine Construction Technology, 2019, 40(4): 1-4, 25. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JJJS201904002.htm
    [5]
    陈瑞杰, 程国栋, 李述训, 等. 人工地层冻结应用研究进展和展望[J]. 岩土工程学报, 2000, 22(1): 40-44. doi: 10.3321/j.issn:1000-4548.2000.01.007

    CHEN Ru-ijie, CHENG Guo-dong, LI Shu-xun, et al. Research progress and prospect of artificial ground freezing[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(1): 40-44. (in Chinese) doi: 10.3321/j.issn:1000-4548.2000.01.007
    [6]
    张基伟, 刘书杰, 张松, 等. 富水砂层冻结壁形成过程声场响应特征研究[J]. 岩土工程学报, 2020, 42(12): 2230-2239. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202012012.htm

    ZHANG Ji-wei, LIU Shu-jie, ZHANG Song, et al. Response characteristics of sound fields of stratum frozen wall of water-rich sand during developing process[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(12): 2230-2239. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202012012.htm
    [7]
    任韶然, 范志坤, 张亮, 等. 液氮对煤岩的冷冲击作用机制及试验研究[J]. 岩石力学与工程学报, 2013, 32(增刊2): 3790-3794. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2013S2101.htm

    REN Shao-ran, FAN Zhi-kun, ZHANG Li-ang, et al. Cold shock mechanism and experimental study of liquid nitrogen on coal and rock[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(S2): 3790-3794. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2013S2101.htm
    [8]
    马芹永. 人工冻土动态力学特性研究现状及意义[J]. 岩土力学, 2009, 30(增刊1): 10-14. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2009S1002.htm

    MA Qin-yong. Research status of dynamic properties of artificial frozen soil and its significance[J]. Rock and Soil Mechanics, 2009, 30(S1): 10-14. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2009S1002.htm
    [9]
    CHU Y, SUN H, ZHANG D, et al. Nuclear magnetic resonance study of the influence of the liquid nitrogen freeze-thaw process on the pore structure of anthracite coal[J]. Energy Science and Engineering, 2020, 8(4): 1681-1692.
    [10]
    郑晓静. 关于极端力学[J]. 力学学报, 2019, 51(4): 1266-1272. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201904028.htm

    ZHENG Xiao-jing. Extreme mechanics[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(4): 1266-1272. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201904028.htm
    [11]
    张楠, 李景芳, 张志明, 等. 超低温环境混凝土研究与应用综述[J]. 混凝土, 2012(12): 27-29. https://www.cnki.com.cn/Article/CJFDTOTAL-HLTF201212011.htm

    ZHANG Nan, LI Jing-fang, ZHANG Zhi-ming, et al. State-of- art review on research and application of concrete at very low temperature[J]. Concrete, 2012(12): 27-29. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HLTF201212011.htm
    [12]
    时旭东, 李亚强, 李俊林, 等. 不同超低温温度区间冻融循环作用混凝土受压强度试验研究[J]. 工程力学, 2020, 37(4): 153-164. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX202004018.htm

    SHI Xu-dong, LI Ya-qiang, LI Jun-lin, et al. Experimental study on the compressive strength of concrete undergoing freeze-thaw cycle actions with different ultralow temperature ranges[J]. Engineering Mechanics, 2020, 37(4): 153-164. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX202004018.htm
    [13]
    ESMAEILI-FALAK M, KATEBI H, VADIATI M, et al. Predicting triaxial compressive strength and Young's modulus of frozen sand using artificial intelligence methods[J]. Journal of Cold Regions Engineering, 2019, 33(3): 04019007.
    [14]
    KIM S Y, HONG W T, HONG S S, et al. Unfrozen water content and unconfined compressive strength of frozen soils according to degree of saturations and silt fractions[J]. Journal of the Korean Geotechnical Society, 2016, 32(12): 59-67.
    [15]
    GÜLLÜ H, KHUDIR A. Effect of freeze-thaw cycles on unconfined compressive strength of fine-grained soil treated with jute fiber, steel fiber and lime[J]. Cold Regions Science and Technology, 2014(106/107): 55-65.
    [16]
    陈鑫, 张泽, 李东庆, 等. 软弱夹层对水泥土单轴压缩影响研究[J]. 岩石力学与工程学报, 2020, 39(2): 398-412. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202002018.htm

    CHEN Xin, ZHANG Ze, LI Dong-qing, et al. Study on the influence of weak interlayer on uniaxial compression behaviors of cement soils[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(2): 398-412. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202002018.htm
    [17]
    张遂, 匡航, 靳占英, 等. 高含水率冻粉黏土应力-应变曲线特性的试验研究[J]. 水文地质工程地质, 2020, 47(5): 116-124.

    ZHANG Sui, KUANG Hang, JIN Zhan-ying, et al. An experimental study of the stress-strain characteristics of frozen silty clay with high moisture content[J]. Hydrogeology and Engineering Geology, 2020, 47(5): 116-124. (in Chinese)
    [18]
    陈鑫, 张泽, 李东庆. 尺寸和加载速率对冻结水泥土单轴压缩影响[J]. 水文地质工程地质, 2019, 46(6): 74-82. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201906011.htm

    CHEN Xin, ZHANG Ze, LI Dong-qing. Effect of size and loading rate on the uniaxial compression characteristics of frozen cement soil[J]. Hydrogeology & Engineering Geology, 2019, 46(6): 74-82. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201906011.htm
    [19]
    杜海民, 张淑娟, 马巍. 高含冰(水)量冻土的单轴抗压强度变化特性研究[J]. 冰川冻土, 2014, 36(5): 1213-1219. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201405019.htm

    DU Hai-min, ZHANG Shu-juan, MA Wei. Study of the uniaxial compressive strength characteristics of frozen soil with high ice /water content[J]. Journal of Glaciology and Geocryology, 2014, 36(5): 1213-1219. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201405019.htm
    [20]
    黄星, 李东庆, 明锋, 等. 冻土的单轴抗压、抗拉强度特性试验研究[J]. 冰川冻土, 2016, 38(5): 1346-1352. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201605020.htm

    HUANG Xing, LI Dong-qing, MING Feng, et al. Experimental study of the compressive and tensile strengths of artificial frozen soil[J]. Journal of Glaciology and Geocryology, 2016, 38(5): 1346-1352. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201605020.htm
    [21]
    于长一, 刘爱民, 郭炳川, 等. 冻土不同拉伸试验强度差异性研究[J]. 岩土工程学报, 2019, 41(增刊2): 157-160. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2019S2041.htm

    YU Chang-yi, LIU Ai-min, GUO Bing-chuan, et al. Different tensile tests on difference of strength of frozen soils[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S2): 157-160. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2019S2041.htm
    [22]
    付伟, 汪稔, 胡明鉴, 等. 不同温度下冻土单轴抗压强度与电阻率关系研究[J]. 岩土力学, 2009, 30(1): 73-78. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200901018.htm

    FU Wei, WANG Ren, HU Ming-jian, et al. Study of relationship between uniaxial compressive strength and electrical resistivity of frozen soil under different temperatures[J]. Rock and Soil Mechanics, 2009, 30(1): 73-78. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200901018.htm
    [23]
    姚兆明, 张雯, 郭梦圆. 考虑温度效应冻结黏土内变量蠕变模型分析[J]. 长江科学院院报, 2020, 37(12): 81-85, 91. https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB202012016.htm

    YAO Zhao-ming, ZHANG Wen, GUO Meng-yuan. An internal-variable creep model for frozen clay based on the temperature[J]. Journal of Yangtze River Scientific Research Institute, 2020, 37(12): 81-85, 91. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB202012016.htm
    [24]
    陈士威, 林斌. 原状与重塑冻结黏土单轴抗压对比试验[J]. 煤矿安全, 2019, 50(6): 62-66. https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ201906015.htm

    CHEN Shi-wei, LIN Bin. Contrast test on uniaxial compression of undisturbed and remolded frozen clay[J]. Safety in Coal Mines, 2019, 50(6): 62-66. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ201906015.htm
    [25]
    李怀鑫, 林斌, 范登政. 人工冻黏土单轴无侧限抗压强度试验研究[J]. 煤矿安全, 2020, 51(7): 55-60. https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ202007011.htm

    LI Huai-xin, LIN Bin, FAN Deng-zheng. Uniaxial compressive strength test on artificially frozen clay[J]. Safety in Coal Mines, 2020, 51(7): 55-60. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ202007011.htm
    [26]
    VIALOV S S. The strength and creep calculation of the barriers made of frozen soil[J]. Soil Mechanics and Foundation Engineering, 1963, 11(9): 25-26.
    [27]
    KONDNER R L. Hyperbolic stress-strain response: cohesive soils[J]. Journal of the Soil Mechanics and Foundations Division, 1963, 89(1): 115-143.
    [28]
    王丽琴, 鹿忠刚, 邵生俊. 岩土体复合幂-指数非线性模型[J]. 岩石力学与工程学报, 2017, 36(5): 1269-1278. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201705022.htm

    WANG Li-qin, LU Zhong-gang, SHAO Sheng-jun. A composite power exponential nonlinear model of rock and soil[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(5): 1269-1278. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201705022.htm
    [29]
    朱元林, 张家懿, 彭万巍, 等. 冻土的单轴压缩本构关系[J]. 冰川冻土, 1992, 14(3): 210-217. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT199203002.htm

    ZHU Yuan-lin, ZHANG Jia-yi, PENG Wan-wei, et al. Constitutive relations of frozen soil in uniaxial compression[J]. Journal of Glaciology and Geocryology, 1992, 14(3): 210-217. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT199203002.htm
    [30]
    张雅琴, 杨平, 江汪洋, 等. 含水率及应变速率对冻结粉质黏土强度特性影响[J]. 郑州大学学报(工学版), 2020, 41(3): 79-84. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZGY202003015.htm

    ZHANG Ya-qin, YANG Ping, JIANG Wang-yang, et al. Effect of water content and strain rate on the strength characteristics of frozen silty clay[J]. Journal of Zhengzhou University(Engineering Science), 2020, 41(3): 79-84. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZZGY202003015.htm
    [31]
    杜洋, 唐丽云, 杨柳君, 等. 基于核磁共振下的冻土-结构正融过程界面特性研究[J]. 岩土工程学报, 2019, 41(12): 2316-2322. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201912024.htm

    DU Yang, TANG Li-yun, YANG Liu-jun, et al. Interface characteristics of frozen soil-structure thawing process based on nuclear magnetic resonance[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(12): 2316-2322. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201912024.htm
    [32]
    马巍, 王大雁. 冻土力学[M]. 北京: 科学出版社, 2014.

    MA Wei, WANG Da-yan. Frozen Soil Mechanics[M]. Beijing: Science Press, 2014. (in Chinese)
    [33]
    PITTMAN F, MOHAMMED A, CEY E. Effects of antecedent moisture and macroporosity on infiltration and water flow in frozen soil[J]. Hydrological Processes, 2020, 34(3): 795-809.
    [34]
    赵晓东, 周国庆. 温度梯度冻土蠕变变形规律和非均质特征[J]. 岩土工程学报, 2014, 36(2): 390-394. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201402021.htm

    ZHAO Xiao-dong, ZHOU Guo-qing. Creep deformation and heterogeneous characteristics for frozen soils with thermal gradient[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(2): 390-394. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201402021.htm
  • Related Articles

    [1]YANG Shengqi, JING Xiaojiao. Experimental study on physical and mechanical properties of sandstone after drying-wetting cycles of brine[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(10): 2165-2171. DOI: 10.11779/CJGE20220830
    [2]LONG An-fa, CHEN Kai-sheng, JI Yong-xin. Experimental study on wetting-drying cycles of red clay slopes under different rainfall intensities[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S2): 193-196. DOI: 10.11779/CJGE2019S2049
    [3]LIU Xin-rong, YUAN Wen, FU Yan, WANG Zi-juan, MIAO Lou-li, XIE Wen-bo. Porosity evolution of sandstone dissolution under wetting and drying cycles[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(3): 527-532. DOI: 10.11779/CJGE201803017
    [4]LIU Xin-rong, YUAN Wen, FU Yan, WANG Zi-juan, ZHU Le-wen, XIE Ying-kun. Deterioration rules of shear strength in sandstones under wetting and drying cycles in acid and alkali environment[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(12): 2320-2326. DOI: 10.11779/CJGE201712022
    [5]LIU Xin-rong, LI Dong-liang, ZHANG Liang, WANG Zhen. Influence of wetting-drying cycles on mechanical properties and microstructure of shaly sandstone[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(7): 1291-1300. DOI: 10.11779/CJGE201607017
    [6]YANG He-ping, WANG Xing-zheng, XIAO Jie. Influence of wetting-drying cycles on strength characteristics of Nanning expansive soils[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(5): 949-954. DOI: 10.11779/CJGE201405020
    [7]ZHOU Jian, XU Hong-zhong, HU Wen-jie. Impact of wetting-drying cycle effects on stability of expansive soil slopes[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 152-156.
    [8]WU Jun-hua, YUAN Jun-ping. Field tests on expansive soil during wetting-drying cycles using large shear apparatus[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk1): 103-107.
    [9]YE Wei-min, WAN Min, CHEN Bao, CUI Yu-jun, WANG Ju. Micro-structural behaviors of densely compacted GMZ01 bentonite under drying/wetting cycles[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(8): 1173-1177.
    [10]Influence of repeated drying and wetting cycles on mechanical behaviors of unsaturated soil[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(1).

Catalog

    Article views (267) PDF downloads (178) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return