基于DHPC-VAE模型的滑坡堆积体表观数据映射内部变形重建方法

    A Reconstruction Method for Internal Deformation of Landslide Deposits Based on DHPC-VAE Model Using Surface Apparent Data Mapping

    • 摘要: 滑坡灾害的早期预测与内部变形机制解析是地质灾害预警与工程防控的核心科学问题。传统有限元模拟方法虽然具备物理机制支撑,但在复杂边坡工程中计算效率较低,无法满足工程动态更新需求;而依赖表面监测的经验模型虽具备实时性,却难以实现对滑坡内外观整体变形趋势的快速而准确模拟。本研究提出一种深度多层次点云变分自编码模型 DHPC-VAE,将有限元模拟蕴含的物理先验与深度学习模型的非线性拟合能力融合,并引入监测数据进行物理约束微调,构建了从滑坡表面到内部多层三维变形场的逐层推测模型。在典型滑坡体案例中,DHPC-VAE模型实现表面点云到内部点云的逐层递推重建。结果显示,模型还原了有限元计算和监测数据所表现的滑坡内部变形趋势,预测曲线与监测数据相关性最高可达0.94。最后将InSAR表面变形数据带入模型得出内部变形与内监测数据验证,得出时序和空间相关性最高可达0.81和0.87。DHPC-VAE为复杂地质体内部变形反演提供了一种结合“模型-数据驱动 + 物理校正”思想的全过程自动推演方法,可在不增加现场监测成本的前提下推测滑坡内部变形分布状态,具有在滑坡数字孪生建模、边坡工程智能监测与动态预警中的重要应用潜力。

       

      Abstract: Early prediction of landslide hazards and analysis of internal deformation mechanisms are critical for disaster warning and engineering mitigation. While grounded in physical mechanisms, traditional finite element simulations are labor-intensive and poorly suited for the dynamic demands of complex slope engineering. Empirical models, though efficient, lack accuracy in capturing internal deformation dynamics. To address this gap, we propose a Deep Hierarchical Point Cloud Variational AutoEncoder (DHPC-VAE) that fuses physical priors from finite element simulations with the nonlinear modeling capabilities of deep learning. By integrating surface and internal monitoring data for physics-guided fine-tuning, our model performs progressive, layer-wise reconstruction of 3D deformation fields from surface to subsurface. Case studies demonstrate that DHPC-VAE accurately replicates internal deformation patterns, achieving a maximum correlation coefficient of 0.94 with monitoring data. Further, incorporating InSAR surface deformation enables internal inference with temporal and spatial correlation coefficients up to 0.81 and 0.87, respectively. This framework provides a fully automated, cost-effective solution for internal deformation inversion, bridging model- and data-driven paradigms with physics-informed learning. It holds strong potential for landslide digital twin modeling, intelligent slope monitoring, and real-time early warning applications.

       

    /

    返回文章
    返回