基于深度学习的基坑开挖引起地表位移时序预测

    Time series prediction of surface displacement induced by excavation of foundation pits based on deep learning

    • 摘要: 为更精准预测基坑工程中数据的时间特性,结合卷积神经网络CNN模型与两种单一时间序列神经网络模型长短期记忆网络LSTM模型、门控循环单元GRU模型,建立混合时间序列神经网络CNN-LSTM模型、CNN-GRU模型。基于杭州某邻近既有车站基坑开挖工程,采用滚动预测方法建立基坑开挖引起邻近地铁车站地表沉降数据集。通过平均绝对误差MAE、平均相对误差MAPE和均方根误差RMSE3种评价指标对预测结果进行评价。结果表明:CNN-GRU模型预测效果最优,CNN-LSTM模型次之,其次是GRU模型,最后是LSTM模型。CNN-LSTM混合网络模型相较于LSTM模型对3种评价指标分别降低了24.4%,53.8%,4.1%,CNN-GRU混合网络模型相较于GRU模型分别降低了13.9%,49.1%,1%。

       

      Abstract: To predict the time characteristics of data more accurately in foundation pit engineering, two single time series neural network models are combined, the convolutional neural network (CNN) and long short-term memory network (LSTM), as well as the gated recurrent unit (GRU), to establish a hybrid time series neural network model CNN-LSTM and CNN-GRU. An excavation project of a foundation pit adjacent to an existing station in Hangzhou is selected, and a rolling prediction method is used to create a dataset of surface settlement caused by excavation of the foundation pit in the adjacent subway stations. The predicted results are evaluated by three evaluation indexes: mean absolute error (MAE), mean relative error (MAPE) and root mean square error (RMSE). The results demonstrate that the CNN-GRU has the best prediction effects, followed by the CNN-LSTM, GRU and LSTM. Compared with the LSTM model, the CNN-LSTM hybrid network model reduces the three evaluation indexes by 24.4%, 53.8% and 4.1%, respectively, and the CNN-GRU hybrid network model decreases by 13.9%, 49.1% and 1%, respectively, compared with the GRU model.

       

    /

    返回文章
    返回