蒋明镜, 李子煜, 李承超, 姜朋明. CO2置换开采CH4水合物的深海地层多场耦合连续介质数值方法研究[J]. 岩土工程学报, 2025, 47(7): 1354-1364. DOI: 10.11779/CJGE20240762
    引用本文: 蒋明镜, 李子煜, 李承超, 姜朋明. CO2置换开采CH4水合物的深海地层多场耦合连续介质数值方法研究[J]. 岩土工程学报, 2025, 47(7): 1354-1364. DOI: 10.11779/CJGE20240762
    JIANG Mingjing, LI Ziyu, LI Chengchao, JIANG Pengming. Multi-field coupling continuum numerical method for exploiting CH4 by CO2 replacement in deep-sea formation[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(7): 1354-1364. DOI: 10.11779/CJGE20240762
    Citation: JIANG Mingjing, LI Ziyu, LI Chengchao, JIANG Pengming. Multi-field coupling continuum numerical method for exploiting CH4 by CO2 replacement in deep-sea formation[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(7): 1354-1364. DOI: 10.11779/CJGE20240762

    CO2置换开采CH4水合物的深海地层多场耦合连续介质数值方法研究

    Multi-field coupling continuum numerical method for exploiting CH4 by CO2 replacement in deep-sea formation

    • 摘要: 通过诱导水合物分解的开采方式将致使含天然气水合物沉积物(后称能源土)力学性质劣化,进而可能引发一系列地质灾害。CO2置换法能有效改善地层强度,但目前鲜有研究考虑CO2置换开采的分析方法。基于此,针对CO2置换法开展数值方法研究和应用。通过拓展TOUGH+HYDRATE数学模型、嵌入Chen-Guo模型计算CH4-CO2多元水合物相平衡条件,建立CO2置换的数值模拟器T+MixH V1.0,并与室内试验和已有数值计算结果对比,验证模拟器的可靠性。随后与FLAC3D结合,建立了CO2置换开采工况下的温-压-力-化多场耦合数值分析方法。最后对比分析了南海储层降压、置换开采CH4水合物两种情景以及经历不同开采时间后的能源土地基载荷板试验,结果表明:相比于降压开采方式,置换开采提高了产气量并减缓了地层沉降,其原因在于降压造成的能量损失使CH4水合物分解范围有限,而置换开采在合适的温压条件下自发进行且生成的CO2水合物对地层有一定支撑作用。此外,能源土地基承载特性主要受控于两种因素:孔压变化引起的有效应力变化,水合物分解/生成引起的胶结强度变化。

       

      Abstract: The extraction method that induces hydrate dissociation may deteriorate the mechanical properties of methane hydrate bearing sediments (MHBS), potentially leading to a series of significant disasters. The carbon dioxide (CO2) replacement method can effectively improve the sediment strength, but few methods have considered its mechanical response. So, a numerical method for the CO2 replacement method as well as its application is studied. Based on TOUGH+HYDRATE, a numerical simulator, T+MixH V1.0 is developed to simulate the CO2 replacement process by incorporating the Chen-Guo hydrate model to calculate the multi-component hydrate phase equilibrium conditions. The reliability of the simulator is validated by comparing with other experimental and numerical results. Then, a thermo-hydro-mechanic-chemical multi-field coupling numerical method for the CO2 replacement is established by coupling with FLAC3D. Finally, the gas hydrate exploitation is simulated through depressurization and CO2 replacement methods in the South China Sea, as well as the plate loading tests on MHBS ground during gas production. The results indicate that the CO2 replacement increases gas production and mitigates subsidence of the ground, which comes from that depressurization causes energy loss, limiting the decomposition of CH4 hydrate, whereas the CO2 replacement method occurs spontaneously, and the generated CO2 hydrate provides support in the ground. Besides, the bearing characteristics of MHBS ground are mainly affected by two factors: the effective stress variation caused by pore pressure changes, and the bond strength variation induced by gas hydrate decomposition/generation.

       

    /

    返回文章
    返回