水-力-化耦合效应下膨润土衬垫防渗特性研究

    Hydro-mechanical-chemical coupling effect on the hydraulic conductivity of geosynthetic clay liner

    • 摘要: 通过开展不同应力和化学溶液下膨润土衬垫(Geosynthetic Clay Liner,简称GCL)的柔性壁渗透试验,研究了水-力-化耦合效应下GCL的防渗性能。研究结果表明,蒸馏水作用下,GCL的渗透系数与压力在对数坐标系下呈良好的线性关系。化学溶液会明显地抑制GCL中膨润土颗粒的膨胀,使得颗粒间孔隙尺寸和孔隙率增大,进而提高GCL的渗透系数。同时,GCL的渗透系数主要与化学溶液的浓度和阳离子化合价有关。CaCl2溶液浓度从0.01到0.20 mol/L时,GCL的渗透系数会从4.12×10-11升高至4.22×10-7 m/s,上升高达4个数量级。但是,NaCl溶液作用下,浓度从0.01增加至0.20 mol/L时,GCL的渗透系数仅从5.32×10-11升高到7.0×10-11 m/s,上升1个量级以内。因此,二价阳离子对GCL渗透系数的影响明显高于一价阳离子的。此外,GCL受扰动后,会明显导致颗粒出现不均匀分布,由此引起GCL内产生明显优势流,进而使得GCL的渗透系数大于5.0×10-11 m/s。化学和应力耦合效应下,当应力从50kPa增加至250kPa时,低浓度或单价阳离子溶液作用下的GCL渗透系数几乎不变,维持在5.0×10-11 m/s左右,但高浓度高价阳离子溶液作用下,尽管GCL的渗透系数会从4.22×10-7下降至2.87×10-10 m/s,但依然难于满足我国国标10-11 m/s量级的要求。此外,微观尺度上,化学溶液阳离子浓度、种类以及蒙脱石含量等均会明显地影响单个膨润土颗粒的膨胀性能,但是,介观尺度的颗粒尺寸、颗粒分布、孔隙率及贯通流径的形成等,是决定GCL结构性演化并最终导致其渗透破坏的主要原因。

       

      Abstract: This study aims to investigate the influence of stress and chemical solution on the hydraulic conductivity of Geosynthetic Clay Liner (GCL) using flexible wall permeation tests. The results indicate that the hydraulic conductivity of GCL exhibits an excellent linear relationship with pressure on a logarithmic scale under distilled water. However, the expansion of bentonite particles in GCL is inhibited by a chemical solution, which increases the pore size, porosity, and hydraulic conductivity of GCL. The hydraulic conductivity of GCL is primally related to the concentration and cation valence of the chemical solution. When the concentration increased from the same value (0.01 to 0.20 mol/L), the hydraulic conductivity under the CaCl2 solution increased from 4.12×10-11 to 4.22×10-7 m/s (up to four orders of magnitude) while under the NaCl solution only changes from 5.32×10-11 to 7.00×10-11 m/ s, which indicates that the influence of divalent cation on the hydraulic conductivity of GCL is significantly higher than that of the monovalent cation. Meanwhile, the hydraulic conductivity of GCL with uneven particle distribution by disturbance cannot meet the China standard (<5.0×10-11 m/s). Under the coupling effect of the chemical and stress, when the stress increase from 50 to 250 kPa, the hydraulic conductivity of GCL decreases to less than 5.0×10-11 m/s under the low concentration or monovalent cationic solution. In contrast, under the high concentration and valence cation solution, the hydraulic conductivity of GCL decreased from 4.22×10-7 to 2.87×10-10 m/s (about three orders of magnitude). However, 2.87×10-10 m/s still cannot meet the requirements of the China standard. The concentration and type of the solution and the montmorillonite content on the micro-scale affect the expansion of a bentonite particle. However, the mesoscale particle size, particle distribution, porosity, and pore size, are crucial in determining the structural evolution of GCL and the hydraulic conductivity.

       

    /

    返回文章
    返回