砂土中大直径单桩风机动力响应模型试验

    Model tests on large-diameter monopile-supported offshore wind turbine in sand

    • 摘要: 采用电机伺服随机动力加载设备开展了一系列1g模型试验,研究砂土中大直径单桩基础的风机模型在风暴条件下的动力响应特性。试验结果表明:叶片风机模型,其位移响应极值相比集中质量风机模型大约偏小4%~8%。相比顶部集中质量模型5 Hz左右的单共振峰值,叶片风机模型频响分布含4 Hz与6 Hz对应的2个固有频率共振峰值,分别为塔身固有频率与叶片塔筒耦合固有频率。风暴条件下随着平均风速的提高,风机位移响应极值呈现非线性增长的趋势。采用固定底端的风机模型相比单桩基础,其塔顶位移响应极值偏低约45%,固有频率偏高约11%;能量水平更高、高频分布更多的风谱,其对应风机动力响应极值更高,频域能量水平更高。

       

      Abstract: Using the motor servo random dynamic loading equipment, a series of 1g model tests are carried out to investigate the dynamic response characteristics of the monopile-supported wind turbine model in sand under storm conditions. The experimental results indicate that the extreme displacement response of the blade-coupled model is about 4%~8% smaller than the lumped model. The lumped model contains a single resonance peak corresponding to 5 Hz. However, the blade-coupled model contains two natural frequency resonance peaks 4Hz and 6Hz, which are corresponding to the natural frequencies of the tower and the blade-tower coupling respectively. With the increase of the average wind speed under storm conditions, the extreme displacement response shows a non-linear growth trend. For the bottom-fixed model, the extreme displacement response of the tower tip is about 45% lower, and the natural frequency is about 11% higher compared with the monopile foundation model. For the wind spectrum with higher energy level and more high-frequency distribution, the corresponding extreme dynamic response and the energy level in the frequency domain are higher.

       

    /

    返回文章
    返回