• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
HU Qi, LING Dao-sheng, CHENG Ze-hai, CHEN Zheng. Effects of temperature stress on diaphragm wall of circular deep foundation pit[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(11): 2139-2143.
Citation: HU Qi, LING Dao-sheng, CHENG Ze-hai, CHEN Zheng. Effects of temperature stress on diaphragm wall of circular deep foundation pit[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(11): 2139-2143.

Effects of temperature stress on diaphragm wall of circular deep foundation pit

More Information
  • Received Date: February 04, 2013
  • Published Date: November 19, 2013
  • The effects of temperature on retaining structure of deep foundation pits are related with the thermal-mechanical coupling problem of temperature and stress fields and the interaction of water, soils and retaining structures. Through the back analysis of the measured data of Shin-Toyosu substation deep foundation pit in Tokyo, an analysis method for the effects of temperature fields on retaining structures of circular deep foundation pit is determined, and the changing patterns of temperature fields in the retaining structures are acquired. The research results are applied to the analysis of Shanghai 2010 Expo underground substation. The results show that the inner surface of the retaining structures is exposed to the atmosphere, and that temperature difference occurs between the inner and the outside of the wall due to change of atmospheric temperature. The temperature fields vary in different positions and construction stages. There is no constraint effect of soils in the pit, so the hoop stress of diaphragm wall above the excavation face mainly depends on the water-earth pressure outside the pit, and if temperature decreases, the volume of diaphragm wall will shrink. The diaphragm wall under or near the excavation face is restricted by the soils in the pit, so the hoop stress of the diaphragm wall will decrease when the temperature decreases.
  • [1]
    郑 刚, 顾晓鲁. 考虑支撑-围护桩-土相互作用的基坑支护水平支撑温度应力的简化分析法[J]. 土木工程学报, 2002, 35(3): 87-89. (ZHENG Gang, GU Xiao-lu. Simple method for calculating temperature stress in horizontal strut of foundation pit considering strut-pile-soil interaction[J]. China Civil Engineering Journal, 2002, 35(3): 87-89. (in Chinese))
    [2]
    杨更社, 张 晶. 非均匀温度分布冻土墙围护深基坑开挖的有限元数值模拟[J]. 岩石力学与工程学报, 2003, 22(2): 316-320. (YANG Geng-she, ZHANG jing. finite element numerical simulation of deep foundation pit excavation supported by frozen soil wall with nonhomogeneous temperature distribution[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(2): 316-320. (in Chinese))
    [3]
    陆培毅, 韩丽君, 于 勇. 基坑支护支撑温度应力的有限元分析[J]. 岩土力学, 2008, 29(5): 1290-1294. (LU Pei-yi, HAN Li-jun, YU Yong. Finite element analysis of temperature stress in strut of foundation pit[J]. Rock and Soil Mechanics, 2008, 29(5): 1290-1294. (in Chinese))
    [4]
    吴 明, 孙鸣宇, 夏唐代, 等. 多层支撑深基坑中考虑支撑—围护桩—土相互作用的水平支撑温度应力简化计算方法[J]. 土木工程学报, 2009, 42(1): 91-94. (WU Ming, SUN Ming-yu, XIA Tang-dai, et al. Simplified method of calculating temperature stress in multi-layer struts for deep excavations considering strut-pile-soil interactions[J]. China Civil Engineering Journal, 2009, 42(1): 91-94. (in Chinese))
    [5]
    艾智勇, 苏 辉. 深基坑多层水平支撑温度应力的简化计算方法[J]. 同济大学学报(自然科学版), 2011, 39(2): 199-203. (AI Zhi-yong, SU Hui. A simplified method of calculating thermal stress for multi-layered horizontal struts in deep excavations[J]. Journal of Tongji University (Natural Science), 2011, 39(2): 199-203. (in Chinese))
    [6]
    陈玉香. 环境温度对某深基坑围护结构内力与变形影响分析[J]. 昆明学院学报, 2010, 32(3): 100-103. (CHEN Yu-xiang. Analysis on the influence of ambient temperature to enclosure structure internal force and deformation in a deep foundation excavation[J]. Journal of Kunming University, 2010, 32(3): 100-103. (in Chinese))
    [7]
    罗耀武, 凌道盛, 陈云敏, 等. 环形超深基坑围护结构受力变形特性分析[J]. 岩土力学, 2011, 32(2): 617-622. (LUO Yao-wu, LING Dao-sheng, CHEN Yun-min, et al. Mechanical and deformation characteristics of enclosure structure for annular extra-deep excavation[J]. Rock and Soil Mechanics, 2011, 32(2): 617-622. (in Chinese))
    [8]
    姚 武, 郑 欣. 配合比参数对混凝土热膨胀系数的影响[J]. 同济大学学报(自然科学版), 2007, 35(1): 77-87. (YAO Wu, ZHENG Xin. Effect of mix proportion on coefficient of thermal expansion of concrete[J]. Journal of Tongji University(Natural Science), 2007, 35(1): 77-87. (in Chinese))
    [9]
    朱伯芳. 大体积混凝土温度应力与温度控制[M]. 北京: 中国电力出版社, 1999. (ZHU Bo-fang. Thermal stresses and temperature control of mass concrete[M]. Beijing: China Electric Power Press, 1999. (in Chinese))
    [10]
    唐世斌, 唐春安, 梁正召, 等. 混凝土热传导与热应力的细观特性及热开裂过程研究[J]. 土木工程学报, 2012, 45(2): 11-19. (TANG Shi-bin, TANG Chun-an, LIANG Zheng-zhao, et al. Study of thermal conduction and thermal stress of concrete at mesoscopic level and its thermal cracking processes[J]. China Civil Engineering Journal, 2012, 45(2): 11-19. (in Chinese))
    [11]
    KUMAGAI T, ARIIZUMI K, KASHIWAGI A. Behaviour and analysis of large-scale cylindrical earth retaining structure[J]. Soils and Foundations, Japanese Geotechnical Society, 1999, 39(3): 13-26.
  • Related Articles

    [1]ZHONG Yu-qing, CAI Guang-hua, WANG Jun-ge, WANG Zhong, SONG Long-guang. Strength and electrical conductivity characteristics of zinc contaminated soil carbonated/stabilized with GGBS-reactive MgO[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S2): 221-224. DOI: 10.11779/CJGE2021S2052
    [2]LIU Hong-fei, LIU Jun-fang, SU Yue-hong, JIN Yan. New method for dealing with unconfined compressive strength outliers[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S1): 137-140. DOI: 10.11779/CJGE2020S1027
    [3]WANG Fei, XU Wang-qi. Strength and leaching performances of stabilized/solidified (S/S) and ground improved (GI) contaminated site soils[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(10): 1955-1961. DOI: 10.11779/CJGE202010022
    [4]HAN Peng-ju, ZHANG Wen-bo, LIU Xin, BAI Xiao-hong. Early strength of cemented soils polluted by magnesium chloride[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(6): 1173-1178. DOI: 10.11779/CJGE201406025
    [5]LIU Zhao-peng, DU Yan-jun, LIU Song-yu, JIANG Ning-jun, ZHU Jing-jing. Strength and microstructural characteristics of cement solidified lead-contaminated kaolin exposed to leaching circumstances[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(3): 547-554. DOI: 10.11779/CJGE201403018
    [6]DU Yan-jun, JIANG Ning-jun, WANG Le, WEI Ming-li. Strength and microstructure characteristics of cement-based solidified/stabilized zinc-contaminated kaolin[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(11): 2114-2120.
    [7]ZHU Chun-peng, LIU Han-long, SHEN Yang. Laboratory tests on shear strength properties of soil polluted by acid and alkali[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(7): 1146-1152.
    [8]Unconfined Compressive Strength Properties of Cement Solidified/Stabilized Lead-Contaminated Soils[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(12): 1898-1903.
    [9]ZHUANG Xinshan, WANG Gongxun, ZHU Ruigeng, TIAN Bi. Experimental study on unconfined compressive strength of clays stabilized with fly ash and slag[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(8): 965-969.
    [10]Hu Zhongxiong, Xi Yonghui. Neasurement and Treatment of Underground Soil Polluted by SO ̄(2-)4[J]. Chinese Journal of Geotechnical Engineering, 1994, 16(1): 54-61.

Catalog

    Article views (336) PDF downloads (374) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return