Citation: | LIU De-wen, XU Chun-mei, DENG Yong-liang, GUO Chun-li. Discussion on "Several shear spatially mobilized planes and anisotropic strength criteria of soils"[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(10): 1947-1949. |
[1] |
邵生俊, 许 萍, 陈昌禄. 土的剪切空间滑动面分析及各向异性强度准则研究[J]. 岩土工程学报, 2013, 35(3): 422-435. (SHAO Sheng-jun, XU Ping, CHEN Chang-lu. Several shear spatially mobilized planes and anisotropic strength criteria of soils[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(3): 422-435. (in Chinese))
|
[2] |
MATSUOKA H, NAKAI T. stress-deformation and strength characteristics of soil under three difference principal stresses[J]. Proc of Japan Society of Civil Engineers, 1974, 232: 59-70.
|
[3] |
YOSHIMINE M, ISHIHARA K, VARGAS W. Effects of principal stress direction and intermediate principal stress on undrained shear behavior of sand[J]. Soils and Foundations, 1998, 38(3): 117-186.
|
[4] |
LADE P V, DUNCAN J M. Cubical triaxial tests on cohesionless soils[J]. Soil Mechanics and Foundation Division, ASCE, 1973, 99(10): 793-812.
|
[5] |
姚仰平, 路德春, 周安楠, 等. 广义非线性强度理论及其变换应力空间[J]. 中国科学(E辑), 2004, 34(11): 1283-1299. (YAO Yang-ping, LU De-chun, ZHOU An-nan, et al. The generalized nonlinear strength theory and transformed stress space[J]. Science in China (Ser E), 2004, 34(11): 1283-1299. (in Chinese))
|
[1] | XU Ping, SHAO Sheng-jun, FANG Ling-yun, SUN Zhi-jun. Cross-isotropic strength criteria based on spatial plane variation[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(6): 1036-1043. DOI: 10.11779/CJGE202206007 |
[2] | XU Ping, SUN Zhi-jun, SHAO Sheng-jun. Strength characteristics based on variation of spatial mobilization plane for anisotropic geomaterials[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(6): 1118-1124. DOI: 10.11779/CJGE202106015 |
[3] | DONG Tong, ZHENG Ying-ren, KONG Liang, ZHE Mei. Strength criteria and slipping planes of anisotropic sand considering direction of major principal stress[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(4): 736-742. DOI: 10.11779/CJGE201804018 |
[4] | SHAO Sheng-jun, ZHANG Yu, CHEN Chang-lu, SHAO Shuai. Strength criterion based on σ1/3 spatially mobilized plane of soils and its comparison with conventional criteria[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(4): 577-585. DOI: 10.11779/CJGE201504001 |
[5] | SHAO Sheng-jun, XU Ping, CHEN Chang-lu, WANG Qiang. Reply to discussion of "Several shear spatially mobilized planes and anisotropic strength criteria of soils"[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(10): 1950-1952. |
[6] | LIU Yang. Anisotropic strength criteria of sand: inherent anisotropy[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(8): 1526-1534. |
[7] | SHAO Sheng-jun, XU Ping, CHEN Chang-lu. Several shear spatially mobilized planes and anisotropic strength criteria of soils[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(3): 422-435. |
[8] | Lü Xi-lin, HUANG Mao-song, QIAN Jian-gu. Three-dimensional strength criterion for layered-anisotropic cohesionless soils[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(6): 945. |
[9] | ZHANG Lianwei, ZHANG Jianmin, ZHANG Ga. SMP-based anisotropic strength criteria of granular materials[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(8): 1107-1111. |
[10] | Guo Shaohua. Standard space theory of strength criterion for anisotropic internal friction materials[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(3): 340-343. |