Citation: | HE Min, LI Ning, LIU Nai-fei. Analysis and validation of coupled heat-moisture-deformation model forsaturated frozen soils[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(10): 1858-1865. |
[1] |
李 宁, 程国栋, 徐学祖. 冻土力学的研究进展与思考[J].力学进展, 2001, 31(1): 95–102. (LI Ning, CHENG Guo-dong, XU Xue-zu. The advance and review on frozen soil Mechanics[J]. Advance in Mechanics, 2001, 31(1): 95–102. (in Chinese))
|
[2] |
CHEN X B, WANG Y Q. Frost heave prediction for clayey soils[J]. Cold Region Science and Technology, 1988, 15(3): 233–238.
|
[3] |
GUYMON G, BERG R, HROMADKA T. Mathematical model of frost heave and thaw settlement in pavements[R]. USA Cold Regions Research and Engineering Lab, 1993.
|
[4] |
NIXON J F. Discrete ice lens theory for frost heave in soils[J]. Canadian Geotechnical Journal, 1991, 28: 843–859.
|
[5] |
SHENG Dai-chao. Thermodynamics of freezing soils-theory and application[D]. Sweden: Lulea University of Technology.
|
[6] |
苗天德, 郭 力, 牛永红, 等. 正冻土中水热迁移问题的混合物理论模型[J]. 中国科学D辑, 1999, 42(增刊): 8–14. (MIAO Tian-de, GUO Li, NIU Yong-hong, et al. Thermodynamic model of heat-moisture migration in saturated freezing soil with mixture theory[J]. Sciences in China (Series D), 1999, 42(S0): 8–14. (in Chinese))
|
[7] |
郭 力, 苗天德. 饱和正冻土中水热迁移的热力学模型[J].岩土工程学报, 1998, 20(5): 87–91. (GUO Li, MIAO Tian-de. Thermo dynamic model of heat-moisture migration in saturated freezing soil[J]. Chinese Journal of Geotechnical Engineering, 1998, 20(5): 87–91. (in Chinese))
|
[8] |
DUQUENNOI C, FREMOND M. Modelling of thermal soil behavior[J]. VTT Symposium 94. 1989, 2: 895–915.
|
[9] |
FREMOND M, MIKKOLA M. Thermomechanical modelling of freezing soil[C]// Proceedings of the Sixth International Symposium on Ground Freezing, Rotterdam. A.A. Balkema, 1991: 17–24.
|
[10] |
张玉军.核废料处置概念库近场热–水–应力耦合二维有限元模拟[J]. 岩土工程学报, 2006, 28(9): 1053–1058. (ZHANG Yu-jun. 2D FEM simulaition for coupled thermo-hydro-mechinical processes of near fileld in conceptual nuclear watste repository[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(9): 1053–1058. (in Chinese))
|
[11] |
许 强, 彭功生, 李南生, 等. 土冻结过程中的水热力三场耦合数值分析[J]. 同济大学学报(自然科学版), 2005, 33(10): 1281–1285. (XU Qiang, PENG Gong-sheng, LI Nan-sheng, et al. Numerical method of phase-change field of temperature coupled with moisture, stress in frozen soil[J]. Journal of Tongji University (Nature Science), 2005, 33(10): 1281–1285. (in Chinese))
|
[12] |
陈 波, 李 宁, 禚瑞花. 土冻结过程中的水热力三场耦合数值分析[J]. 岩石力学与工程学报, 2001, 20(4): 467–472. (CHEN Bo, LI Ning, ZHUO Rui-hua. Coupling numerical analysis of Termo-hydro-mechanical of the frozen process of soil[J]. Chinese Journal of Rock Mechanics and Engineering, 2001, 20(4): 467–472. (in Chinese))
|
[13] |
陈飞熊, 李 宁, 程国栋. 饱和正冻土多孔多相介质的理论构架[J]. 岩土工程学报, 2002, 24(2): 213–217. (CHEN Fei-xiong, LI Ning, CHENG Guo-dong. The theoretical frame of multi-phase porous medium for the freezing soil[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(2): 213–217. (in Chinese))
|
[14] |
陈飞熊. 饱和正冻土温度场、水分场和变形场三场耦合理论框架[D]. 西安: 西安理工大学, 2001. (CHEN Fei-xiong. The fully coupled modeling of the Thermal-moisture- deformation behavior for the saturated freezing soils[D]. Xi'an: Xi'an University of Technology, 2001. (in Chinese))
|
[15] |
KAY B D, PERFECT E. State of the art: Heat and mass transfer in freezing soils[C]// Proc of 5th International Symposium on Ground Freezing, Nottingham, UK, 1988.
|
[16] |
NIXON J F. Field frost heave predictions using the segregation potential concept[J]. Canadian Geotechnical Journal, 1982, 19: 526–529.
|
[17] |
GUYMON G, BERG R, HROMADKA T. A one-dimensional frost heaven model based upon simulation of simultaneous heat and water flux[J]. Cold Regions Science and Technology, 1980, 3: 253–263.
|
[18] |
TAYOR G S, LUTHIN J N. A model for coupled heat and moisture transfer during soil freezing[J]. Canadian Geotechnical Journal, 1978, 15: 548–555.
|
[19] |
李洪升, 刘增利. 冻土水热力耦合作用的数学模型及数值模拟[J]. 力学学报, 2001, 33(5): 622–629. (LI Hong-sheng, LIU Zeng-li. Mathematical model for coupled moisture, heat and stress field and numerical simulation of frozen soil[J]. Chinese Journal of Theoretical and Applied Mechanics, 2001, 33(5): 622–629. (in Chinese))
|
[20] |
宁建国, 朱志武.含损伤的冻土本构模型及藕合问题数值分析[J]. 力学学报, 2007, 39(1): 70–76. (NING Jian-guo, ZHU Zhi-wu. Constitutive numerical model of frozen soil with damage and simulation of the coupled problem[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 39(1): 70–76. (in Chinese))
|
[21] |
LAI Yuan-ming, WU Zi-wang, ZHU Yuan-lin. Nonlinear analysis for the coupled problem of temperature and seepage fields in cold region tunnels[J]. Cold Regions Science and Technology, 1999(29): 89–96.
|
[22] |
PENNER E. Aspects of ice lens growth in soils[J]. Cold Regions Science and Technology, 1986, 13: 91–100.
|
[23] |
SHEN Mu, LADANYI B. Modelling of coupled heat, moisture and stress filed in freezing soil[J]. Cold regions Science and Technology, 1987, 14: 237–246.
|
[24] |
XU Xue-zu, OLIPHANT J L, TICE A R. Prediction of unfrozen water contents in frozen soils by a two-points or onr-point method[C]// Proc 4th Int Symp on Ground Freezing, Sapporo, Japan, 1985, 2: 83–87.
|
[25] |
徐学祖, 邓友生. 冻土中水分迁移的实验研究[M]. 北京:科学出版社, 1991. (XU Xue-zu, DENG You-sheng, Experimental research on heat-moisture migration in freezing soil[M]. Beijing: Science Press, 1991. (in Chinese))
|
[26] |
HORIGUCHI K L, MILLER R D. Hydraulic conductivity functions of frozen materials[C]// Proc 4th Int Conf on Permafrost, Alaska, USA, 1983.
|
[27] |
LAMBE T W, WHITMAN R V. Soil mechanics[M]. New York: John Wiley & Sons, Inc, 1969.
|
[28] |
ZHU Yuan-lin, CARBEE D L. Uniaxial compressive strength of frozen silt under constant deformation rates[J]. Cold Regions Science Technology, 1984, 9: 13–15.
|
[1] | YANG Jiaqi, LIU Donghai, WANG Zefan. Permeability and strain-stress characteristics of phase-change clay under triaxial compression[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(12): 2584-2593. DOI: 10.11779/CJGE20221143 |
[2] | TANG Yang, ZHENG Ming-fei, SHI Shi-yong. Model tests on thermal response of phase-change pile in saturated silt foundation[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S2): 139-142. DOI: 10.11779/CJGE2022S2030 |
[3] | ZENG Zhao-jun, TANG Chao-sheng, CHENG Qing, AN Ni, SHI Bin. Influences of water phase change/migration factors in hydro-thermal coupling model for unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S1): 40-45. DOI: 10.11779/CJGE2022S1008 |
[4] | XIAO Ze-an, ZHU Lin-ze, HOU Zhen-rong, DONG Xiao-qiang. Effects of water/salt phase transition on matric suction of sulfate saline soil[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(10): 1935-1941. DOI: 10.11779/CJGE202210020 |
[5] | HUANG Ying-hao, CHEN Yong, ZHU Xun, WU Zhi-qiang, ZHU Rui, WANG Shuo, WU Min. Experimental study and micro-mechanism analysis of freeze-thaw performance of expansive soils improved by phase-change materials[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(11): 1994-2002. DOI: 10.11779/CJGE202111005 |
[6] | XIAO Ze-an, HOU Zhen-rong, DONG Xiao-qiang. Phase transition of pore solution in saline soil during cooling process[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(6): 1174-1180. DOI: 10.11779/CJGE202006024 |
[7] | TENG Ji-dong, HE Zuo-yue, ZHANG Sheng, SHENG Dai-chao. Moisture transfer and phase change in unsaturated soils: physical mechanism and numerical model for two types of “canopy effect”[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(10): 1813-1821. DOI: 10.11779/CJGE201610010 |
[8] | ZHANG Wei-hua, ZHAO Cheng-gang, FU Fang. Bounding-surface constitutive model for saturated sands based on phase transformation state[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(5): 930-939. |
[9] | WANG Zhi-hua, ZHOU En-quan, CHEN Guo-xing, GAO Hong-mei. Characteristics of solid-liquid phase change of saturated sand under cyclic loading[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(9): 1604-1610. |
[10] | Guo Li, Miao Tiande, Zhang Hui, Niu Yonghong. Thermodynamic models of heat moisture migration in saturated freezing soil[J]. Chinese Journal of Geotechnical Engineering, 1998, 20(5): 90-94. |