Citation: | HUANG Mao-song, LI Xue-feng, QIAN Jian-gu. Strain localization of anisotropic sand[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(10): 1772-1780. |
[1] |
FINNO R J, HARRIS W W, VIGGIANI G. Shear bands in plane strain compression of loose sand[J]. Géotechnique, 1997, 47(1): 149–l65.
|
[2] |
TATSUOKA F, NAKAMURA S, HUANG C C, et al. Strength anisotropy and shear band direction in plane strain tests of sand[J]. Soils and Foundations, 1990, 30(1): 35–54.
|
[3] |
蔡正银, 李相菘. 取决于材料状态的变形局部化现象[J]. 岩石力学与工程学报, 2004, 23(4): 533–538. (CAI Zheng-yin, LI Xiang-song. State-dependent strain localization[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(4): 533–538. (in Chinese))
|
[4] |
黄茂松, 钱建固. 平面应变条件下饱和土体分叉后的力学性状[J]. 工程力学, 2005, 22(1): 48–53. (HUANG Mao-song, QIAN Jian-gu. Post-bifurcation response of saturated soils under plane strain conditions[J]. Engineering Mechanics, 2005, 22(1): 48–53. (in Chinese))
|
[5] |
ODA M. Initial fabrics and their relations to mechanical properties of granular materials[J]. Soils and Foundations, 1972, 12(1): 17–36.
|
[6] |
ODA M. Fabric tensor and its geometrical meaning[C]// Introduction to Mechanics of Granular Materials, ODA M, IWASHITA K, eds. A. A. Balkema, Rotterdam, The Netherlands, 1999: 27–5.
|
[7] |
ODA M, KOISHIKAWA I. Effect of strength anisotropy on bearing capacity of shallow footing in a dense sand[J]. Soils and Foundations, 1979, 19(3): 15–28.
|
[8] |
ODA M, KOISHIKAWA I, HIGUCHI T. Experimental study on anisotropic shear strength of sand by plane strain test[J]. Soils and Foundations, 1978, 18(1): 25–38.
|
[9] |
TATSUOKA F, SAKAMOTO M, KAWAMURA T, et al. Strength and deformation characteristics of sand in plane strain compression at extremely low pressures[J]. Soils and Foundations, 1986, 26(1): 65–84.
|
[10] |
TATSUOKA F. Impacts on geotechnical engineering of several recent findings from laboratory stress-strain tests on geomaterials[R]. The 2000 Burmister Lecture, http: //geotle. t.u-tokyo.ac.jp/tatsuoka/lecture/Burmister00/No3.doc.
|
[11] |
黄茂松, 扈 萍, 钱建固. 基于材料状态相关砂土临界状态理论的应变局部化分析[J]. 岩土工程学报, 2008, 30(8): 1133–1139. (HUANG Mao-song, HU Ping, QIAN Jian-gu. Strain localization of sand based on a state-dependent critical state model[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(8): 1133–1139. (in Chinese))
|
[12] |
钱建固, 黄茂松. 土体应变局部化的理论解析[J]. 岩土力学, 2005, 26(3): 432–437. (QIAN Jian-gu, HUANG Mao-song, An analytical solution for criterion of onset of strain localization of soils[J]. Rock and soil Mechanics, 2005, 26(3): 432–437. (in Chinese))
|
[13] |
HUANG Mao-song, LU Xi-lin, QIAN Jian-gu. Non-coaxial elasto-plasticity model and bifurcation prediction of shear banding in sands[J]. Internaltional Journal for Numerical and Analytical Methods in Geomechanics, 2010, 34(9): 906–919.
|
[14] |
李学丰, 黄茂松, 钱建固. 宏细观结合的砂土各向异性破坏准则[J]. 岩石力学与工程学报, 2010, 29(9): 1885–1892. (LI Xue-feng, HUANG Mao-song, QIAN Jian-gu. Failure criterion of anisotropic sand with the method of macro-micro incorporation[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(9): 1885–1892. (in Chinese))
|
[15] |
LI X S, WANG Y. Linear representation of steady-state line for sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 1998, 124(12): 1215–1217.
|
[16] |
BEEN K, JEFFERIES M G. A state parameter for sands[J]. Géotechnique, 1985, 35(2): 99–112.
|
[17] |
WILLIAM K J, WARNKE E P. Constitutive model for the triaxial behavior of concrete[C]// International Association for Bridge and Structure Engineering Proceedings, Bergamo, Italy, 1975, 19: 117–131.
|
[18] |
TOBITA Y. Contact tensor in constitutive model for granular materials[C]// Proc U.S.-Japan Seminar on Micromechanics of Granular Materials, SATAKE M, JENKINS J, eds. Elsevier, New York, 1988: 263–270.
|
[19] |
ISHIHARA K. Liquefaction and flow failure during earthquakes[J]. Géotechnique, 1993, 43(3): 351–415.
|
[20] |
YANG Z X, LI X S, YANG J. Quantifying and modelling fabric anisotropy of granular soils[J]. Géotechnique, 2008, 58(4): 237–248.
|
[21] |
LI X S, DAFALIAS Y F. Dilatancy for cohesionless soils[J]. Géotechnique, 2000, 50(4): 449–460.
|
[22] |
GAJO A, MUIR Wood D. A kinematic hardening constitutive model for sands: the multiaxial formulation[J]. Int J Numer Analyt Method Geomech, 1999, 23: 925–965.
|
[23] |
LAM W K, TATSUOKA M. Effect of initial anisotropic fabric and ?2 on strength and deformation characteristics of sand[J]. Soils and Foundations, 1988, 28(1): 89–106.
|
[24] |
黄茂松, 李学丰, 贾苍琴. 基于材料状态相关理论的砂土双屈服面模型[J]. 岩土工程学报, 2010, 31(11): 1764–1771. (HUANG Mao-song, LI Xue-feng, JIA Cang-qin. A double yield surface constitutive model for sand based on state-dependent critical state theory[J]. Chinese Journal of Geotechnical Engineering, 2010, 31(11): 1764–1771. (in Chinese))
|
[25] |
ABELEV A V, LADE P V. Effects of cross-anisotropy on three-dimensional behavior of sand I: Stress-strain behavior and shear banding[J]. Journal of Engineering Mechanics, ASCE, 2003, 129(2): 160–166.
|
[1] | YANG Jiaqi, LIU Donghai, WANG Zefan. Permeability and strain-stress characteristics of phase-change clay under triaxial compression[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(12): 2584-2593. DOI: 10.11779/CJGE20221143 |
[2] | TANG Yang, ZHENG Ming-fei, SHI Shi-yong. Model tests on thermal response of phase-change pile in saturated silt foundation[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S2): 139-142. DOI: 10.11779/CJGE2022S2030 |
[3] | ZENG Zhao-jun, TANG Chao-sheng, CHENG Qing, AN Ni, SHI Bin. Influences of water phase change/migration factors in hydro-thermal coupling model for unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S1): 40-45. DOI: 10.11779/CJGE2022S1008 |
[4] | XIAO Ze-an, ZHU Lin-ze, HOU Zhen-rong, DONG Xiao-qiang. Effects of water/salt phase transition on matric suction of sulfate saline soil[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(10): 1935-1941. DOI: 10.11779/CJGE202210020 |
[5] | HUANG Ying-hao, CHEN Yong, ZHU Xun, WU Zhi-qiang, ZHU Rui, WANG Shuo, WU Min. Experimental study and micro-mechanism analysis of freeze-thaw performance of expansive soils improved by phase-change materials[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(11): 1994-2002. DOI: 10.11779/CJGE202111005 |
[6] | XIAO Ze-an, HOU Zhen-rong, DONG Xiao-qiang. Phase transition of pore solution in saline soil during cooling process[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(6): 1174-1180. DOI: 10.11779/CJGE202006024 |
[7] | TENG Ji-dong, HE Zuo-yue, ZHANG Sheng, SHENG Dai-chao. Moisture transfer and phase change in unsaturated soils: physical mechanism and numerical model for two types of “canopy effect”[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(10): 1813-1821. DOI: 10.11779/CJGE201610010 |
[8] | ZHANG Wei-hua, ZHAO Cheng-gang, FU Fang. Bounding-surface constitutive model for saturated sands based on phase transformation state[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(5): 930-939. |
[9] | WANG Zhi-hua, ZHOU En-quan, CHEN Guo-xing, GAO Hong-mei. Characteristics of solid-liquid phase change of saturated sand under cyclic loading[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(9): 1604-1610. |
[10] | Guo Li, Miao Tiande, Zhang Hui, Niu Yonghong. Thermodynamic models of heat moisture migration in saturated freezing soil[J]. Chinese Journal of Geotechnical Engineering, 1998, 20(5): 90-94. |