• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
SHENG Jin-chang, XU Xiao-chen, YAO De-sheng, ZHAN Mei-li, SU Bao-yu. Advances in permeability evolution infractured rocks during hydro-mechanical-chemical processes[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(7): 996-1006.
Citation: SHENG Jin-chang, XU Xiao-chen, YAO De-sheng, ZHAN Mei-li, SU Bao-yu. Advances in permeability evolution infractured rocks during hydro-mechanical-chemical processes[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(7): 996-1006.

Advances in permeability evolution infractured rocks during hydro-mechanical-chemical processes

More Information
  • Received Date: January 05, 2010
  • Published Date: July 14, 2011
  • The advances in permeability evolution in fractured rocks during hydro-mechanical-chemical processes over the past decade are introduced from both experimental and numerical studies. Generally macro-homogenization methods are employed to study the permeability evolution in fractured rocks and the macro-relations between permeability and physical variables (such as stress, temperature, pH value of solution, concentration of solutes, etc.). But there exist some deficiencies for the macro-homogenization methods: meso-changes of pore structures are difficult to be characterized due to mineral dissolution and precipitation, and formation and development of flow conduits also cannot be described numerically. So three following suggestions may be beneficial to the further studies on mechanics of permeability evolution in fractured rocks under complicate geological environment: (1) design of experimental apparatus of coupled fluid flow-mechnical-chemical reaction system in rocks and utilization of no-damaging detection techniques (to obtain meso- and real-time pictures and data); (2) development of digital core techniques; (3) development of mathematical models for multi-physical and chemical processes in micro-meso- macro scales and analytic methods.
  • [1]
    冯夏庭, 丁梧秀. 应力–水流–化学耦合下岩石破裂全过程的细观力学试验[J]. 岩石力学与工程学报, 2005, 24(9): 1465–1473. (FENG X T, DING W X. Meso-mechanical experiment of microfracturing process of rock under coupled mechanical-hydrological-chemical environment[J]. Journal of Rock Mechanics and Engineering, 2005, 24(9): 1465–1473. (in Chinese))
    [2]
    周 辉, 冯夏庭. 岩石应力–水力–化学耦合过程研究进展[J]. 岩石力学与工程学报, 2006, 25(4): 855–864. (ZHOU H, FENG X T. Advances in coupled mechanical- hydro-chemical Processes in rocks[J]. Journal of Rock Mechanics and Engineering, 2006, 25(4): 855–864. (in Chinese))
    [3]
    徐晓春, 王 军, 李 援, 等. 安徽铜陵林冲尾矿库重金属元素分布与迁移及其环境影响. 岩石矿物学杂志, 2003, 22(4): 433–436. (XU X C, WANG J, LI Y, et al. The distribution and migration of heavy metal elements of Linchong tailings reservoir in Tongling, Anhui Province, and their environment effects[J]. Acta Petrologica Et Mineralogica, 2003, 22(4): 433–436. (in Chinese)
    [4]
    LIN W, ROBERTS J, GLASSLEY W, et al. Fracture and matrix permeability at elevated temperatures[R]. San Francisco: Workshop on Significant Issues and Available Data. 1997.
    [5]
    盛金昌, 速宝玉. 裂隙岩体渗流应力耦合研究综述[J]. 岩土力学, 1998, 19(2): 92–98. (SHENG J C, SU B Y. Comment on the research of coupled stress and fluid flow in fractured rock mass[J]. Rock and Soil Mechanics, 1998, 19(2): 92–98. (in Chinese))
    [6]
    耿克勤, 刘光廷, 陈兴华. 节理岩体的渗透系数与应变、应力的关系[J]. 清华大学学报(自然科学版), 1996(1). (GENG K Q, LIU G T, CHEN X H. Coupling relationship of percolation coefficient of fractured rock masses to strain and stress[J]. Journal of Tsinghua University(Science and Technology), 1996(1). (in Chinese))
    [7]
    刘才华, 陈从新, 付少兰. 二维应力作用下岩石单裂隙渗流规律的试验研究[J]. 岩石力学与工程学报, 2002, 21(8): 1194–1198. (LIU C H, CHEN C X, FU S L. Testing study on seepage characteristic of a single rock fracture under two-dimentional stresses[J]. Journal of Rock Mechanics and Engineering, 2002, 21(8): 1194–1198. (in Chinese))
    [8]
    仵彦卿, 张倬元.《岩体水力学导论》[J]. 地质灾害与环境保护, 1997(3). (WU Y Q, ZHANG Z Y. An introduction to rock mass hydraulics[J]. Journal of Geological Hazards and Environment Preservation, 1997(3). (in Chinese))
    [9]
    李世平, 李玉寿, 吴振业. 岩石全应力应变过程对应得渗透率–应变方程[J]. 岩土工程学报, 1995, 17(2): 231–235. (LI S P, LI Y S, WU Z Y. The permeability strain equations relating to complete stress-strain path of the rock[J]. Journal of Geotechnical Engineering, 1995, 17(2): 231–235. (in Chinese))
    [10]
    周创兵, 熊文林. 论岩体的渗透特性[J]. 工程地质学报, 1996(2). (ZHOU C B, XIONG W L. On permeability characteristics of rock mass[J]. Journal of Engineering Geology, 1996(2). (in Chinese))
    [11]
    王恩志, 张文韶, 韩小妹, 等. 低渗透岩石在围压作用下的耦合渗流实验[J]. 清华大学学报(自然科学版), 2005, 45(6): 764–767. (WANG E Z, ZHANG W S, HAN X M, et al. Experimental study on coupled flow through low permeability rock under confining pressure[J]. Journal of Tsinghua University(Science and Technology, 2005, 45(6): 764–767. (in Chinese))
    [12]
    张玉卓, 张金才. 裂隙岩体渗流与应力耦合的试验研究[J]. 岩土力学, 1997, 18(4): 59–62. (ZHANG Y Z, ZHANG J C. Experimental study of the seepage flow-stress coupling in fractured rock masses[J]. Rock and Soil Mechanics, 1997, 18(4): 59–62. (in Chinese))
    [13]
    郑少河, 赵阳升, 段康廉. 三维应力作用下天然裂隙渗流规律的试验研究[J]. 岩石力学与工程学报, 1999, 18(2): 133–136. (ZHANG S H, ZHANG Y S, DUAN K L. An experimental study on the permeability law of natural fracture under 3-D stresses[J]. Journal of Rock Mechanics and Engineering, 1999, 18(2): 133–136. (in Chinese))
    [14]
    杨天鸿, 唐春安, 朱万成, 等. 岩石破裂过程渗流与应力耦合分析[J]. 岩土工程学报, 2001, 23(4): 489–493. (YANG T H, TANG C A, ZHU W C, et al. Coupling analysis of seepage and stresses in rock failure process[J]. Journal of Geotechnical Engineering, 2001, 23(4): 489–493. (in Chinese))
    [15]
    JING L. A review of techniques, advances and outstanding issues in numerical modelling for rock mechanics and rock engineering[J]. International Journal of Rock Mechanics & Mining Sciences, 2003, 40: 283–353.
    [16]
    HUDSON J A, STEPHANSSON O, ANDERSSON J, et al. Coupled T-H-M issue relating to radioactive waste repository design and performance[J]. Int J of Rock Mech & Min Sci., 2001, 38: 143–161.
    [17]
    TSANG C-F, JING L, STEPHANSSON O, et al. The Decovalex III project: a summary of activities and lessons learned[J]. Int J of Rock Mech & Min Sci, 2005.
    [18]
    MOORE D E, LOCKNER D A, BYERLEE J A. Reduction of permeability in granite at elevated temperatures[J]. Science, 1994: 1558–1560.
    [19]
    MORROW C A, MOORE D E, LOCKNER D A. Permeability reduction in granite under hydrothermal conditions[J]. J Geophys Res, 2001, 106(30): 551–560.
    [20]
    POLAK A, YASUHARA H, ELSWORTH D, et al. The evolution of permeability in natural fractures-the competing roles of pressure solution and free-face dissolution[C]// International Conference on Coupled T-H-M-C Processes in Geo-systems: Fundamentals, Modeling, Experiments & Applications. 719-724. Stockholm, 2003.
    [21]
    POLAK A, ELSWORTH D, LIU J, et al. Spontaneous switching of permeability changes in a limestone fracture with net dissolution[J]. Water Resour Res, 2004, 40: W03502.
    [22]
    ELIAS B P, HAJASH A. Change in quartz solubility and porosity change due to effective stress: An experimental investigation of pressure solution[J]. Geology, 1992, 20: 451–454.
    [23]
    ZHANG S, COX S, PATERSON M. The influence of room temperature deformation on porosity and permeability in calcite aggregates[J]. J Geophys Res, 1994, 99: 761–775.
    [24]
    HAJASH A, CARPENTER T D, DEWERS T A. Dissolution and time-dependent compaction of albite sand: experiments at 100°C and 160°C in pH-buffered organic acids and distilled water[J]. Tectonophysics, 1998(295): 93–115.
    [25]
    FENG X T, LIU J, JING L. Research and application on coupled T-H-M-C processes of geological media in China – a review[C]// International Conference on Coupled T-H-M-C Processes in Geo-systems: Fundamentals, Modelling, experiments & applications, 2003: 32–43.
    [26]
    周 辉, 汤艳春, 胡大伟. 等. 盐岩裂隙渗流–溶解耦合模型及试验研究[J]. 岩石力学与工程学报, 2006, 25(5): 946–950. (ZHOU H, TANG Y Q, HU D W, et al. Study on coupled penetrating-dissolving model and experiment for salt rock cracks[J]. Journal of Rock Mechanics and Engineering, 2006, 25(5): 946–950. (In Chinese))
    [27]
    汤连生, 张鹏程, 王思敬. 水–岩化学作用的岩石宏观力学效应的试验研究[J]. 岩石力学与工程学报, 2002, 21(6): 526–531. (TANG L S, ZHANG P C, WANG S J. Testing study on macroscopic mechanics effect of chemical action of water on rocks[J]. Journal of Rock Mechanics and Engineering, , 21(6): 526–531. (in Chinese))
    [28]
    刘建军, 刘先贵. 有效压力对低渗透多孔介质孔隙度、渗透率的影响[J]. 地质力学学报, 2001, 7(1): 41–44. (LIU J J, LIU X G. The effect of effective pressure on porosity and permeability of low permeability porous media[J]. Journal of Geomechanics, 2001, 7(1): 41–44. (in Chinese))
    [29]
    胡友彪, 白海波, 赵海峰. 徐州新河矿太原组灰岩溶蚀试验研究[J]. 江苏煤炭, 1997(3): 7–10. (HU Y B, BAI H B, ZHAO H F. Experimental study on the limestone corrosion of Xuzhou Xinhe mine[J]. Jiangsu Coal, 1997(3): 7–10. (in Chinese))
    [30]
    张凤娥, 卢耀如. 硫酸盐岩溶蚀机理试验研究[J]. 水文地质工程地质, 2001(5): 12–16. (ZHANG F E, LU Y R. Experimental study on the mechanism of sulphate corrosion[J]. Hydrogeology and Engineering Geology, 2001(5): 12–16. (in Chinese))
    [31]
    蒋忠诚, 袁道先. 表层岩溶带的岩溶动力学特征及其环境和资源意义[J]. 地球学报, 1999, 20(3): 302–308. (JIANG Z C, YUAN D X. Dynamics features of the epikarst zone and their significance in environments and resources[J]. Acta Geoscientica Sinica, 1999, 20(3): 302–308. (in Chinese))
    [32]
    冯夏庭, 王川婴, 陈四利. 受环境侵蚀的岩石细观破裂过程试验与实时观测[J]. 岩石力学与工程学报, 2002, 21(7): 935–939. (FENG X T, WANG C Y, CHEN S L. Testing study and real-time observationof rock meso-cracking process under chemical erosion[J]. Journal of Rock Mechanics and Engineering, 2002, 21(7): 935–939. (in Chinese))
    [33]
    陈四利, 冯夏庭, 李邵军. 岩石单轴抗压强度与破裂特征的化学腐蚀效应[J]. 岩石力学与工程学报, 2003, 22(4): 547–551. (CHEN S L, FENG X T, LI S J. Effects of chemical erosion on uniaxial compressive strength and meso-fracturing behaviors of rock[J]. Journal of Rock Mechanics and Engineering, 2003, 22(4): 547–551. (in Chinese))
    [34]
    李术才, 李树忱, 朱维申, 等. 裂隙水对节理岩体裂隙扩展影响的CT实时扫描试验研究[J]. 岩石力学与工程学报, 2004, 23(21): 3584–3590. (LI S C, LI S C, ZHU W S, et al. CT real-time testing study on effect of water on crack growth in fractured rock mass[J]. Journal of Rock Mechanics and Engineering, 2004, 23(21): 3584–3590. (in Chinese))
    [35]
    STEEFEL C I, CAPPELLEN V P. A new kinetic approach to modeling water–rock interaction: the role of nucleation, precursors, and Ostwald ripening, Geochim[J]. Cosmochim. Acta, 1990, 54: 2657–2677.
    [36]
    YEH G T, TRIPATHI V S. A model for simulating transport of reactive multispecies components: model development and demonstration[J]. Water Resources Res, 1991, 27: 3075–3094.
    [37]
    TANG X M, CHENG C H, PAILLET F L. Modeling borehole Stoneley wave propagation a permeable in-situ fracture[C]// Society of Professional Well Log Analysis Annual Logging Symposium, 32nd, Transactions. Houston, Tex: Society of Professional Well Log Analysts, 1991.
    [38]
    DIJK P, BERKOWITZ B, BENDEL P. Investigation of flow in water-saturated rock fractures using nuclear magnetic resonance imaging (NMRI) [J]. Water Resour Res, 1998, 35: 347–360.
    [39]
    GROVES C G, HOWARD A D. Minimum hydrochemical conditions allowing limestone cave development[J]. Water Res Res, 1994, 30(3): 607–615.
    [40]
    DREYBRODT W, BUHMANN D. A mass transfer model for dissolution and precipitation of calcite from solutions in turbulent motion[J]. Chem Geol 1991, 90: 107–22.
    [41]
    STEEFEL C I, LICHTNER P C. Diffusion and reaction in a rock matrix bordering a hyperalkaline fluid-filled fracture, Geochim[J]. Cosmochim Acta, 1994, 58: 3595–3612.
    [42]
    SHENG J C, XU X C, ZHAN M L, et al. Permeability changes in a rock fracture during coupled fluid flow and chemical dissolution processes[C]// Proceedings of 16th IAHR-APD Congress and 3rd Symposium of IAHR-ISHS, Vol.Ⅰ: Water Resources and Hydrolology, Nanjing, 2008.
    [43]
    YASUHARA H, ELSWORTH D, POLAK A. The evolution of permeability in a natural fracture: the significant role of pressure solution[J]. Journal of Geophysical, 2004, 109.
    [44]
    YASUHARA H, ELSWORTH D, POLAK A. A mechanistic model for compaction of granular aggregates moderated by pressure solution[J]. J Geophys Res, 2003, 108(B11): 2530.
    [45]
    LIU J, SHENG J C, POLAK A, et al. A fully coupled HMC model for fracture sealing and preferential opening[J]. Int J Rock Mech Min Sci, 2006, 43: 23–36.
    [46]
    李义连, 杨玉环, 卢学实. 水–岩相互作用模拟的研究进展[J]. 水文地质工程地质, 2003(3): 95–99. (LI Y L, YANG Y H, LU X S. Research advance on modeling study of water-rock interaction[J]. Hydrogeology and Engineering Geology, 2003(3): 95–99. (in Chinese))
    [47]
    许孝臣, 盛金昌. 渗流–应力–化学耦合作用下单裂隙渗透特性研究[J]. 辽宁工程技术大学学报, 2009(4): 270–272. (XU X C, SHENG J C. Permeability of single fracture under coupled hydrological–mechanical–chemical action[J]. Journal of Liaoning Technical University(Natural Science), 2009(4): 270–272. (in Chinese))
    [48]
    陈 强, 魏有仪, 刘少巍, 等. 岩溶隧道中地下水侵蚀性的化学热力学分析与评价[J]. 水文地质工程地质, 2003(6). (CHEN Q, WEI Y Y, LIU S W, et al. Chemical thermodynamics evaluation on the corrasion of groundwater in karst tunnel[J]. Hydrogeology and Engineering Geology, 2003(6). (in Chinese))
    [49]
    梁卫国, 赵阳升, 李志萍. 盐岩水压致裂溶解耦合数学模型与数值模拟[J]. 岩土工程学报, 2003, 25(4): 427–430. (LIANG W G, ZHAO Y S, LI Z P. The coupled mathematical model and numerical simulation of hydraulic fracturing and dissolving in rock salt[J]. Journal of Geotechnical Engineering, 2003, 25(4): 427–430. (in Chinese))
    [50]
    刘泽佳, 李锡夔, 武文华. 多孔介质中化学–热–水力–力学藕合过程本构模型和数值模拟[J]. 岩土工程学报, 2004, 26(6): 797–803. (LIU Z J, LI X K, WU W H. A constitutive model and numerical simulation for coupled chemo-thermo-hydro-mechanical process in porous media[J]. Journal of Geotechnical Engineering, 2004, 26(6): 797–803. (in Chinese))
    [51]
    张贵金, 徐卫亚, 赖 苗. 溶蚀岩体的溶渗作用及岩溶坝区的渗透性研究[J]. 岩土力学, 2003, 24(5): 795–799. (ZHANG G J, XU W Y, LAI M. Leaching of solution rock and permeability study under karst-engineering geological condition[J]. Rock and Soil Mechanics, 2003, 24(5): 795–799. (in Chinese))
    [52]
    王炳印, 邓金根, 邹灵战, 等. 物理–化学耦合作用下泥页岩坍塌周期应用研究[J]. 石油学报, 2006, 27(3): 130–132. (WANG B Y, DENG J G, ZOU L Z, et al. Applied research of collapse cycle of shale in wellbore using a coupled physico-chemical model[J]. Acta Petrolei Sinica, 2006, 27(3): 130–132. (in Chinese))
    [53]
    张玉军. 考虑溶质浓度变化的热-水-应力耦合模型[J]. 焦作大学学报, 2006(3): 53–55. (ZHANG Y J. Solute concentrations change about the heat-water-mechanical model[J]. Journal of Jiaozuo University, 2006(3): 53–55. (in Chinese))
    [54]
    周 辉, 邵建富, 冯夏庭. 岩石细观统计渗流模型研究(Ⅰ): 理论模型[J]. 岩土力学, 2004, 25(2): 169–173. (ZHOU H, SHAO J F, FENG X T. Research on statistical penetration meso-model of rock[J]. Rock and Soil Mechanics, 2004, 25(2): 169–173. (in Chinese))
    [55]
    徐则民, 黄润秋, 杨立中. 斜坡水–岩化学作用问题[J]. 岩石力学与工程学报, 2004, 23(16): 2778–2787. (XU Z M, HUANG R Q, YANG L Z. Some problems on chemical water-rock interaction in slopes[J]. Journal of Rock Mechanics and Engineering, 2004, 23(16): 2778–2787. (in Chinese))
    [56]
    刘亚晨, 蔡永庆, 刘泉声, 等. 岩体裂隙结构面的温度–应力–水力耦合本构关系[J]. 岩土工程学报, 2001, 23(2): 196–200. (LIU Y C, CAI Y Q, LIU Q S, et al. Thermal-hydraulic-mechanical coupling constitutive relation of rock mass fracture interconnectivity[J]. Jounal of Geotechnical Engineering, 2001, 23(2): 196–200. (in Chinese)
    [57]
    梁 冰, 高红梅, 兰永伟. 岩石渗透率与温度关系的理论分析和试验研究[J]. 岩石力学与工程学报, 2005, 24(12): 2009–2012. (LIANG B, GAO H M, LAN Y W. Theoretical analysis and experimental study on relation between rock and permeability temperature[J]. Journal of Rock Mechanics and Engineering, 2005, 24(12): 2009–2012. (In Chinese))
    [58]
    李 宁, 陈波, 党发宁. 裂隙岩体介质温度、渗流、变形耦合模型与有限元解析[J]. 自然科学进展, 2000, 10(8): 722–728. (LI N, CHEN B, DANG F N. Fractured rock media of thermo, hydrological, mechanical coupled model and finite element analysis[J]. Progress in Natural Science, 2000, 10(8): 722–728. (In Chinese))
    [59]
    徐曾和, 翟玉春, 纪智玲. 固定床中对流扩散与反应耦合问题的一个解析解[J]. 中国有色金属学报, 2004, 14(11): 1918–1925. (XU Zen-he, ZHAI Yu-chun, JI Zhi-ling. An analytical solution for coupled convection-diffusion and chemical reaction in fixed-beds[J]. The Chinese Journal of Nonferrous Metals, 2004, 14(11): 1918–1925. (in Chinese)
    [60]
    姚 军, 赵秀才, 衣艳静, 等. 数字岩心技术现状及展望[J]. 油气地质与采收率, 2005, 12(6): 52–55. (YAO J, ZHAO X C, YI Y J, et al. The current situation and prospect on digital core technology[J]. Oil & Gas Recovery Technology, 2005, 12(6): 52–55. (in Chinese))
    [61]
    岳中琦. 岩土细观介质空间分布数字表述和相关力学数值分析的方法、应用和进展[J]. 岩石力学与工程学报, 2006, 25(5): 875–888. (YUE Z Q. Digital representation of meso-geomaterial spatial distribution and associated numerical analysis of geomechanics: methods, applications, and developments[J]. Journal of Rock Mechanics and Engineering, 2006, 25(5): 875–888. (in Chinese))
  • Related Articles

    [1]SHEN Linfang, LÜ Qianwen, LIU Wenlian, ZHANG Jiaming, YANG Hongzhong, LI Ze. Numerical study on permeability properties of three-dimensional rock fracture under coupled stress-seepage-dissolution process[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(2): 428-437. DOI: 10.11779/CJGE20231061
    [2]Visual experimental study on the coupling process of seepage-erosion in rough fracture and the evolution of permeability[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240363
    [3]LIU Wu, GUO Shen-lei, LU Qian, ZHENG Lian-ge, YUAN Wen-jun. Numerical model for hydro-mechanical-damage coupling of rocks based on TOUGHREACT[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(7): 1306-1314. DOI: 10.11779/CJGE202107016
    [4]LIU Wu, ZHANG Zhen-hua, YE Xiao-dong, CHEN Yi-feng. Multi-scale permeability evolution model for layered rocks[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S2): 68-72. DOI: 10.11779/CJGE2018S2014
    [5]LIU Xian-shan, WANG Ke, XU Ming. Permeability evolution of low-permeability reservoir sandstone considering hydraulic-mechanical-damage coupling effect during gradual fracturing process[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(9): 1584-1592. DOI: 10.11779/CJGE201809003
    [6]ZHANG Chun-hui, ZHENG Xiao-ming. Strain softening and permeability evolution model of loaded rock and experimental verification[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(6): 1125-1132. DOI: 10.11779/CJGE201606020
    [7]JIA Chun-lan, ZHU Kai. Evolution of rock fracture permeability in coupled processes with variable temperatures[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(7): 1307-1312. DOI: 10.11779/CJGE201507018
    [8]YANG Jian-ping, CHEN Wei-zhong, WU Yue-xiu, TAN Xian-jun. Numerical study on equivalent permeability tensor of fractured rock masses[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(6): 1183-1188.
    [9]LIU Yachen, CAI Yongqing, LIU Quansheng, WU Yushan. Thermal-hydraulic-mechanical coupling constitutive relation of rock mass fracture interconnectivity[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(2): 196-200.
    [10]Zhang Jincai, Zhang Yuzhuo. The Effects of Stresses on the Permeability of Fractured Rock Masses[J]. Chinese Journal of Geotechnical Engineering, 1998, 20(2): 19-22.

Catalog

    Article views (1565) PDF downloads (1104) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return