• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LIU Wu, GUO Shen-lei, LU Qian, ZHENG Lian-ge, YUAN Wen-jun. Numerical model for hydro-mechanical-damage coupling of rocks based on TOUGHREACT[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(7): 1306-1314. DOI: 10.11779/CJGE202107016
Citation: LIU Wu, GUO Shen-lei, LU Qian, ZHENG Lian-ge, YUAN Wen-jun. Numerical model for hydro-mechanical-damage coupling of rocks based on TOUGHREACT[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(7): 1306-1314. DOI: 10.11779/CJGE202107016

Numerical model for hydro-mechanical-damage coupling of rocks based on TOUGHREACT

More Information
  • Received Date: August 19, 2020
  • Available Online: December 02, 2022
  • For better modelling the microscopic characteristics and evolution of materials under hydro-mechanical coupling conditions, a TOUGHREACT-based hydro-mechanical-damage coupled numerical model for saturated rocks is established by using the microscopic homogenization method and the thermodynamics theory. The proposed model well accounts for the influences of sliding dilatancy, damage propagation and normal compression of arbitrary microcracks on the macroscopic deformation and failure characteristics, permeability evolution and fluid flow process. The numerical method is successfully validated through the experimental data of water injection tests on coal sample at the laboratory scale and then used to carry out application simulations of water injection responses at the field scale. The numerical simulation results demonstrate that the distributions of injection-induced rock damage and elevated pressure are affected by the injection rate, in-situ stresses and anisotropic distribution of the initial microcracks, and they are more developed in the directions with larger in-situ stress and dominant development of microcracks. Better simulations of the macroscopic hydro-mechanical responses of rocks depend on the accurate characterization of the internal microscopic structures. The research may provide a useful reference for deepening the study on hydro-mechanical coupling of rocks.
  • [1]
    陈益峰, 胡冉, 周创兵, 等. 热-水-力耦合作用下结晶岩渗透特性演化模型[J]. 岩石力学与工程学报, 2013, 32(11): 2185-2195. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201311003.htm

    CHEN Yi-feng, HU Ran, ZHOU Chuang-bing, et al. A permeability evolution model for crystalline rocks subjected to coupled thermo-hydro- mechanical loading[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(11): 2185-2195. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201311003.htm
    [2]
    WU G J, CHEN W E, RONG C, et al. Elastoplastic damage evolution constitutive model of saturated rock with respect to volumetric strain in rock and its engineering application[J]. Tunnelling and Underground Space Technology, 2020, 97: 103284. doi: 10.1016/j.tust.2020.103284
    [3]
    姚池, 姜清辉, 位伟, 等. 复杂裂隙岩体水-力耦合模型及溶质运移模拟[J]. 岩石力学与工程学报, 2013, 32(8): 1656-1665. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201308020.htm

    YAO Chi, JIANG Qing-hui, WEI Wei, et al. Numerical simulation of hydro-mechanical coupling and solute transport in complex fractured rock masses[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(8): 1656-1665. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201308020.htm
    [4]
    胡亚元. 基于混合物理论的饱和岩石弹塑性模型[J]. 岩土工程学报, 2020, 42(12): 2161-2169. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202012002.htm

    HU Ya-yuan. Elastoplastic model for saturated rock based on mixture theory[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(12): 2161-2169. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202012002.htm
    [5]
    陈益峰, 李典庆, 荣冠, 等. 脆性岩石损伤与热传导特性的细观力学模型[J]. 岩石力学与工程学报, 2011, 30(10): 1959-1969. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201110003.htm

    CHEN Yi-feng, LI Dian-qing, RONG Guan, et al. A micromechanical model for damage and thermal conductivity of brittle rocks[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(10): 1959-1969. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201110003.htm
    [6]
    JIANG T, SHAO J F, XU W Y, et al. Experimental investigation and micromechanical analysis of damage and permeability variation in brittle rocks[J]. International Journal of Rock Mechanics and Mining Sciences, 2010, 47(5): 703-713. doi: 10.1016/j.ijrmms.2010.05.003
    [7]
    ZHU Q Z, SHAO J F. Micromechanics of rock damage: Advances in the quasi-brittle field[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2017, 9(1): 29-40. doi: 10.1016/j.jrmge.2016.11.003
    [8]
    刘武. 考虑多尺度结构的贯通节理岩体损伤摩擦耦合模型[J]. 岩土工程学报, 2018, 40(1): 147-154. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201801019.htm

    LIU Wu. Coupled damage and friction model for persistent fractured rocks considering multi-scale structures[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(1): 147-154. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201801019.htm
    [9]
    CHEN Y F, HU S H, ZHOU C B, et al. Micromechanical modeling of anisotropic damage-induced permeability variation in crystalline rocks[J]. Rock Mechanics and Rock Engineering, 2014, 47(5): 1775-1791.
    [10]
    胡大伟, 朱其志, 周辉, 等. 脆性岩石各向异性损伤和渗透性演化规律研究[J]. 岩石力学与工程学报, 2008, 27(9): 1822-1827. doi: 10.3321/j.issn:1000-6915.2008.09.009

    HU Da-wei, ZHU Qi-zhi, ZHOU Hui, et al. Research on anisotropic damage and permeability evolutionary law for brittle rocks[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(9): 1822-1827. (in Chinese) doi: 10.3321/j.issn:1000-6915.2008.09.009
    [11]
    LIU W, CHEN Y F, HU R, et al. A two-step homogenization- based permeability model for deformable fractured rocks with consideration of coupled damage and friction effects[J]. International Journal of Rock Mechanics and Mining Sciences, 2016, 89: 212-226.
    [12]
    DORMIEUX L, KONDO D. Micromechanics of damage propagation in fluid-saturated cracked media[J]. Revue Européenne De Génie Civil, 2007, 11(7/8): 945-962.
    [13]
    XIE N, ZHU Q Z, SHAO J F, et al. Micromechanical analysis of damage in saturated quasi brittle materials[J]. International Journal of Solids and Structures, 2012, 49(6): 919-928.
    [14]
    ZHU Q Z. Strength prediction of dry and saturated brittle rocks by unilateral damage-friction coupling analyses[J]. Computers and Geotechnics, 2016, 73: 16-23.
    [15]
    朱其志, 王岩岩, 仇晶晶, 等. 准脆性岩石水力耦合不排水多尺度本构模型[J]. 河海大学学报:自然科学版, 2018, 46(2): 165-170. https://www.cnki.com.cn/Article/CJFDTOTAL-HHDX201802014.htm

    ZHU Qi-zhi, WANG Yan-yan, QIU Jing-jing, et al. Multiscale hydro-mechanical constitutive model for qusi-brittle rocks under undrained condition[J]. Journal of Hohai University (Natural Science), 2018, 46(2): 165-170. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HHDX201802014.htm
    [16]
    XU T F, SPYCHER N, SONNENTHAL E, et al. TOUGHREACT Version 2.0: a simulator for subsurface reactive transport under non-isothermal multiphase flow conditions[J]. Computers & Geosciences, 2011, 37(6): 763-774.
    [17]
    HU C, LEMARCHAND E, DORMIEUX L, et al. Quasi-isotropic Biot’s tensor for anisotropic porous rocks: experiments and micromechanical modelling[J]. Rock Mechanics and Rock Engineering, 2020, 53(19): 4031-4041.
    [18]
    CHEN Y F, WEI K, LIU W, et al. Experimental characterization and micromechanical modelling of anisotropic slates[J]. Rock Mechanics and Rock Engineering, 2016, 49(9): 3541-3557.
    [19]
    ZHU Q Z, SHAO J F. A refined micromechanical damage- friction model with strength prediction for rock-like materials under compression[J]. International Journal of Solids and Structures, 2015, 60/61: 75-83.
    [20]
    BAZANT Z P, OH B H. Efficient numerical integration on the surface of a sphere[J]. ZAMM Journal of Applied Mathematics and Mechanics, 1986, 66(1): 37-49.
    [21]
    WU C F, ZHANG X Y, WANG M, et al. Physical simulation study on the hydraulic fracture propagation of coalbed methane well[J]. Journal of Applied Geophysics, 2018, 150: 244-253.
    [22]
    GAO Q, GHASSEMI A. Three dimensional finite element simulations of hydraulic fracture height growth in layered formations using a coupled hydro-mechanical model[J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 125: 104137.
    [23]
    YI L P, LI X G, YANG Z Z, et al. A fully coupled fluid flow and rock damage model for hydraulic fracture of porous media[J]. Journal of Petroleum Science and Engineering, 2019, 178, 814-828.
    [24]
    刘武, 张振华, 叶晓东, 等. 层状岩体渗透特性多尺度演化模型研究[J]. 岩土工程学报, 2018, 40(增刊2): 68-72. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2018S2016.htm

    LIU Wu, ZHANG Zhen-hua, YE Xiao-dong, et al. Multi-scale permeability evolution model for layered rocks[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S2): 68-72. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2018S2016.htm
  • Cited by

    Periodical cited type(21)

    1. 俞奎,章敏,秦文权,孙静雯,张开翔,宋利埼. 隧道穿越下埋地管线分布式光纤变形及脱空反演分析. 岩土力学. 2025(03): 894-904 .
    2. 张连贵,刘峰建,张鑫,郭广礼,李怀展,宫亚强. 采动影响下浅埋输油气管线变形监测与风险性评价方法及应用实践. 金属矿山. 2024(03): 183-189 .
    3. 刘奇,刘相林,曹广勇,赵金海,蒋长宝. 基于OFDR的采动覆岩铰接结构回转角度及“三带”变形表征研究. 煤炭科学技术. 2024(03): 63-73 .
    4. 喻文昭,朱鸿鹄,王德洋,谢天铖,裴华富,施斌. 荷载作用下砂土边坡-管道相互作用试验研究. 岩土力学. 2024(05): 1309-1320 .
    5. 崔萧. 基于DVS的地下管网及道路病害监测技术应用. 岩土工程技术. 2024(03): 322-329 .
    6. 庞文彬,郑鑫,葛亮,张凌云,张宁宁. 基于振动提取的沙漠埋地管道弯曲变形监测技术研究. 石油化工自动化. 2024(04): 66-70 .
    7. 李长山,迟帅. 基于时序InSAR遥感监测的中山市软土地面沉降特征及成因研究. 地质灾害与环境保护. 2024(04): 31-38 .
    8. 胡少伟,杨金辉. 大口径高性能聚氯乙烯管道研发与工程安全保障技术. 工程力学. 2023(01): 1-31 .
    9. 朱鸿鹄. 工程地质界面:从多元表征到演化机理. 地质科技通报. 2023(01): 1-19 .
    10. 史淞戈,施斌,刘苏平,张诚成,顾凯,何健辉. 钻孔回填料粒径对传感光缆应变耦合性影响研究. 岩土工程学报. 2023(01): 162-170 . 本站查看
    11. 卢毅,宋泽卓,刘瑾,卜凡,祁长青. 基于DFOS的通州湾地区地面沉降监测与变形分析. 河海大学学报(自然科学版). 2023(02): 81-88 .
    12. 喻文昭,朱鸿鹄,王德洋,李豪杰,叶霄. 埋地管道竖向隆起破坏研究综述. 防灾减灾工程学报. 2023(02): 189-200 .
    13. 张玉,梁昊,林亮,周游,赵青松. 不同沉降方式下埋地管道力学响应试验研究. 岩土力学. 2023(06): 1645-1656 .
    14. 魏祥龙,尹书冉,夏志康,杨涵苑,左利钦,林青炜. 软体排塌陷弯曲变形的应变响应特征分析. 水运工程. 2023(08): 90-95+138 .
    15. 魏祥龙,杨海亮,左利钦,陆永军,杨涵苑,袁赛瑜. 光纤传感监测护底软体排的可行性探讨. 水电能源科学. 2023(12): 147-151 .
    16. 张鑫,郭广礼,李怀展,张连贵,刘峰建,蒋乾,陈延康. 煤矿开采影响下浅埋输油管线变形及力学响应特性. 科学技术与工程. 2023(35): 15052-15059 .
    17. 韦超,朱鸿鹄,高宇新,王静,张巍,施斌. 地面塌陷分布式光纤感测模型试验研究. 岩土力学. 2022(09): 2443-2456 .
    18. 胡健,雒燕,刘瑾,魏世杰,何承宗,李明阳,张晨阳. 基于FBG机械连接部件微渗漏监测应用. 中国海洋平台. 2022(06): 28-34 .
    19. 施斌,朱鸿鹄,张丹,程刚. 从岩土体原位检测、探测、监测到感知. 工程地质学报. 2022(06): 1811-1818 .
    20. 刘保余,袁龙春,尚博,侯东,蒋勇,赵冰,张东. 长输油气埋地管道外检测技术研究. 管道技术与设备. 2021(03): 31-34 .
    21. 丁志国,龚占龙,盛智勇. FBG传感器在排水管道水位实时监测中的应用. 河北农机. 2021(07): 52-53 .

    Other cited types(7)

Catalog

    Article views (322) PDF downloads (128) Cited by(28)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return