• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LIU Xian-shan, WANG Ke, XU Ming. Permeability evolution of low-permeability reservoir sandstone considering hydraulic-mechanical-damage coupling effect during gradual fracturing process[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(9): 1584-1592. DOI: 10.11779/CJGE201809003
Citation: LIU Xian-shan, WANG Ke, XU Ming. Permeability evolution of low-permeability reservoir sandstone considering hydraulic-mechanical-damage coupling effect during gradual fracturing process[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(9): 1584-1592. DOI: 10.11779/CJGE201809003

Permeability evolution of low-permeability reservoir sandstone considering hydraulic-mechanical-damage coupling effect during gradual fracturing process

More Information
  • Received Date: June 01, 2017
  • Published Date: September 24, 2018
  • The accurate assessment of the recovery ratio is significant for drawing up a rational development scheme, so it is significant to reveal the evolution mechanism of the rock permeability considering the progressive failure induced by the reservoir development. Taking the low-permeability reservoir sandstone as the case study, the variation of the rock cracks under different loading combinations is analyzed, and the correlation between the permeability rate and the cracks considering seepage-stress-damage coupling effect is also deeply investigated. According to the results, the permeability decreases at the first stage of loading due to the progressive compaction of the rock pores and small cracks. And then, the increasing hoopstrain results in a moderate increase of permeability due to the stable development of rock cracks, subsequently the increasing load induces the cracks to spread very fast so that the permeability quickly increases. Finally, the permeability gradually decreases because the relative sliding appears in the broken planes and the corresponding rock fragments block the original fluid channels. Based on the experiments, the characteristics of rock damage are analyzed using the theoretical methods, and the relation between the damage and the hoopstrain is described to derive the formula for the permeability and damage to explain the permeability variation. The evolution mechanism of the sandstone permeability is revealed clearly. The above achievements can be an important support for the development optimization and oil capacity prediction for the low-permeability reservoir, and they are also significant for the sustainable development of oil.
  • [1]
    王小江, 荣冠, 周创兵. 粗砂岩变形破坏过程中渗透性试验研究[J]. 岩石力学与工程学报, 2012, 31(增刊1): 2940-2947.
    (WANG Xiao-jiang, RONG Guan, ZHOU Chuang-bin.Permeability experimental studyofgritstone indeformation and failureprocesses[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(S1): 2940-2947. (in Chinese))
    [2]
    TAN X, KONIETZKY H, FRÜHWIRT T. Laboratory observation and numerical simulation of permeability evolution during progressive failure of brittle rocks[J]. International Journal of Rock Mechanics and Mining Sciences, 2014, 68: 167-176.
    [3]
    王伟, 徐卫亚, 王如宾, 等. 低渗透岩石三轴压缩过程中的渗透性研究[J]. 岩石力学与工程学报, 2015, 34(1): 40-47.
    (WANG Wei, XU Wei-ya, WANG Ru-bin, et al.Permeability of dense rock under triaxial compression[J]. Chinese Journal of Rock Mechanics and Engineering,2015,34(1): 40-47. (in Chinese))
    [4]
    俞缙, 李宏, 陈旭, 等. 渗透压-应力耦合作用下砂岩渗透率与变形关联性三轴试验研究[J]. 岩石力学与工程学报, 2013, 32(6): 1203-1213.
    (YU Jin, LI Hong, CHEN Xu, et al.Triaxial experimental study on sandstone of the permeability-strain relationship under coupling effects of seepage and stress[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(6): 1203-1213. (in Chinese))
    [5]
    YANG S Q, HUANG Y H, JIAO Y Y, et al.An experimental study on seepage behavior of sandstone material with different gas pressures[J]. Acta Mech Sin, 2015, 31(6): 837-844.
    [6]
    胡少华, 陈益峰, 周创兵. 北山花岗岩渗透特性试验研究与细观力学分析[J]. 岩石力学与工程学报, 2014, 33(11): 2200-2209.
    (HU Shao-hua, CHEN Yi-feng, ZHOU Chuang-bing.Laboratory test and mesomechanical analysis of permeability variation of Beishan granite[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(11): 2200-2209. (in Chinese))
    [7]
    陈亮, 王春萍, 刘健锋, 等. 压缩应力条件下花岗岩损伤演化特征及其对渗透性影响研究[J]. 岩石力学与工程学报, 2014, 33(2): 287-295.
    (CHEN Liang, WANG Chun-ping, LIU Jian-feng, et al.Investigation on evolution characteristics of granite under compressive stress condition and its impact on permeability[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(2): 287-295. (in Chinese))
    [8]
    王伟, 李雪浩, 胡大伟, 等. 脆性岩石三轴压缩渐裂过程中的渗透性演化规律研究[J]. 岩土力学, 2016(10): 2761-2768.
    (WANG Wei, LI Xue-hao, HU Da-wei, et al.Permeability evolution of brittle rock in progressive failure process under triaxial compression[J]. Rock and Soil Mechanics, 2016(10): 2761-2768. (in Chinese) )
    [9]
    俞缙, 李宏, 陈旭, 等. 砂岩卸围压变形过程中渗透特性与声发射试验研究[J]. 岩石力学与工程学报, 2014, 33(1): 69-79.
    (YU Jin, LI Hong, CHEN Xu, et al.Experimental study on permeability and acoustic emission characteristics of sandstone during processes of unloading confining pressure and deformation[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(1): 69-79. (in Chinese))
    [10]
    孔茜, 王环玲, 徐卫亚. 循环加卸载作用下砂岩孔隙度与渗透率演化规律试验研究[J]. 岩土工程学报, 2015, 37(10): 1893-1900.
    (KONG Qian, WANG Huang-ling, XU Wei-ya.Experimental investigation on relationship between porosity and permeability of sandstone under cyclic loading condition[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(10): 1893-1900. (in Chinese))
    [11]
    王伟, 徐卫亚, 郑志, 等. 不同应力路径下花岗片麻岩渗透特性的试验研究[J]. 岩石力学与工程学报, 2016, 35(2): 260-267.
    (WANG Wei, XU Wei-ya, ZHENG Zhi, et al.Experimental study of permeability properties of granitic gneiss under different stress paths[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(2): 260-267. (in Chinese))
    [12]
    张振华, 孙钱程, 李德忠, 等. 周期性渗透压作用下红砂岩渗透特性试验研究[J]. 岩土工程学报, 2015, 37(5): 937-943.
    (ZHANG Zhen-hua, SUN Qian-cheng, LI De-zhong, et al.Experimental study on permeability characteristics of red sandstone under cyclic seepage pressures[J]. Rock and Soil Mechanics, 2015, 37(5): 937-943. (in Chinese))
    [13]
    闵琪, 金贵孝, 荣春龙. 低渗透油气田研究与实践[M]. 北京: 石油工业出版社, 1998: 1-5.
    (MIN Qi, JIN Gui-xiao, RONG Chun-long.Studies and practices on low permeability oil and gas field[M]. Beijing: Petroleum Industry Press, 1998: 1-5. (in Chinese))
    [14]
    HEILAND J.Laboratory testing of coupled hydro-mechanical processes during rock deformation[J]. Hydrogeol Journal, 2003, 11(1): 122-141.
    [15]
    朱泽奇, 盛谦, 冷先伦, 等. 三峡花岗岩起裂机制研究[J]. 岩石力学与工程学报, 2007, 26(12): 2570-2575.
    (ZHU Ze-qi, SHENG Qian, LENG Xian-lun, et al.Study of crack initiation mechanism of three gorges granite[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(12): 2570-2575. (in Chinese))
    [16]
    FRENCH M E, CHESTER F M, CHESTER J S, et al.Stress-dependent transport properties of fractured arkosic sandstone[J]. Geofluids, 2016, 16(3): 533-551.
    [17]
    XU P, YANG S Q.Permeability evolution of sandstone under short-term and long-term triaxial compression[J]. International Journal of Rock Mechanics & Mining Sciences, 2016, 85: 152-164.
    [18]
    王伟, 田振元, 朱其志, 等. 考虑孔隙水压力的岩石统计损伤本构模型研究[J]. 岩石力学与工程学报, 2015, 34(增刊2): 3676-3682.
    (WANG Wei, TIAN Zhen-yuan, ZHU Qi-zhi, et al.Study of statistical damage constitutive model for rock considering pore water pressure[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(S2): 3676-3682. (in Chinese))
    [19]
    GAO C, XIE L Z, XIE H P, et al.Coupling between the statistical damage model and permeability variation in reservoir sandstone: theoretical analysis and verification[J]. Journal of Natural Gas Science and Engineering, 2017, 37: 375-385.
  • Related Articles

    [1]HUANG Juan, HE Zhen, YU Jun, HE Weijie. Analytical solutions and application of circular cofferdams considering backseal effects[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(12): 2510-2518. DOI: 10.11779/CJGE20221101
    [2]CHEN Peipei, ZHANG Xingbo, JIN Ming, QI Jilin. Analytical solution of transient seepage problem in unsaturated soil based on principle of homogeneous construction[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(12): 2490-2499. DOI: 10.11779/CJGE20220903
    [3]YU Jun, LI Dongkai, HU Zhongwei, ZHENG Jingfan. Analytical solution of steady seepage field of foundation pit considering thickness of retaining wall[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(7): 1402-1411. DOI: 10.11779/CJGE20220357
    [4]SHU Rong-jun, KONG Ling-wei, WANG Jun-tao, JIAN Tao, ZHOU Zhen-hua. Mechanical behavior of granite residual soil during wetting considering effects of initial unloading[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S1): 154-159, 165. DOI: 10.11779/CJGE2022S1028
    [5]GUO Yu-feng, WANG Hua-ning, JIANG Ming-jing. Analytical solutions of seepage field for underwater shallow-buried parallel twin tunnels[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(6): 1088-1096. DOI: 10.11779/CJGE202106012
    [6]DOU Jin-xi, ZHANG Gui-jin, CHEN An-zhong, YANG Bo-shi, XIN Rui-liang, JIANG Huang-bin, DUAN Ji-hong, LI Hai. Mechanism of seepage control of pulsating grouting in completely weathered granite stratum[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(2): 309-318. DOI: 10.11779/CJGE202102011
    [7]YAO Xi-he, ZHAO Xiao-bao, GONG Qiu-ming, MA Hong-su, LI Xiao-zhao, TANG Wei, LU Guang-liang, HE Guan-wen. Linear cutting experiments on crack modes of rock under indentation of a single disc cutter[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(9): 1705-1713. DOI: 10.11779/CJGE201409018
    [8]WU Li-zhou, HUANG Run-qiu. Analytical analysis of coupled seepage in unsaturated soils considering varying surface flux[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(9): 1370-1375.
    [9]XIE Qiang, Carlos Dinis da Gama, YU Xianbin. Acoustic emission behaviors of aplite granite[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(5): 745-749.
    [10]DU Shouji, ZHI Hongtao. Experimental research on the mechanical properties of granite rock and concrete after high-temperature[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(4): 482-485.
  • Cited by

    Periodical cited type(9)

    1. 辛灏辉,高卿林,冯鹏,刘玉擎. 桥梁结构中E-GFRP单向板徐变性能与双尺度均匀化数值评估. 工程力学. 2024(08): 93-106 .
    2. 熊壮,杨学祥,范济敏. 充气膨胀控制锚杆的蠕变试验. 科学技术与工程. 2024(26): 11385-11392 .
    3. 陈文杰,叶毅荣. 玻璃纤维筋抗浮锚杆在某工程中的抗拔试验研究与应用. 广东建材. 2024(10): 76-79 .
    4. 刘鹏,刘军,郑仔弟,郑辉,白雪. 基于GFRP筋与钢绞线复合式锚杆支护施工的关键技术研究. 市政技术. 2023(08): 245-252 .
    5. 井德胜,白晓宇,王海刚,张明义,李翠翠,焦玉进,闫君,王忠胜. 玻璃纤维增强聚合物锚杆蠕变性能研究进展. 复合材料科学与工程. 2022(02): 119-128 .
    6. 白晓宇,井德胜,张明义,涂兵雄,魏国,吕承禄,黄春霞. 全长黏结非金属抗浮锚杆体系设计方法研究. 中南大学学报(自然科学版). 2022(08): 3168-3177 .
    7. 井德胜,白晓宇,刘超,刘永江,张明义,黄永峰. 抗浮锚杆荷载-位移特性及极限承载力预测. 科学技术与工程. 2021(22): 9570-9576 .
    8. 井德胜,白晓宇,冯志威,张明义,李翠翠. 玄武岩纤维增强聚合物锚杆用于地下结构抗浮的可行性研究. 材料导报. 2021(19): 19223-19229 .
    9. 白晓宇,刘雪颖,张明义,井德胜,郑晨. GFRP筋及钢筋抗浮锚杆承载特性现场试验及荷载-位移模型. 复合材料学报. 2021(12): 4138-4149 .

    Other cited types(3)

Catalog

    Article views (334) PDF downloads (217) Cited by(12)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return