• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
WANG Guo-bo, XIE Wei-ping, SUN Ming, LIU Wei-guo. Evaluation method for seismic behaviors of underground frame structures[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(4): 593.
Citation: WANG Guo-bo, XIE Wei-ping, SUN Ming, LIU Wei-guo. Evaluation method for seismic behaviors of underground frame structures[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(4): 593.

Evaluation method for seismic behaviors of underground frame structures

More Information
  • Published Date: April 14, 2011
  • The study on seismic responses of underground structures is focusing on the specific structure under a given earthquake, and the safety of the structure is not known under the seismic responses. Therefore, much attention should be paid to the evaluation method for underground frame structures during earthquake. The researches on the evaluation methods for underground structures are summarized. A new evaluation method is presented based on the former research results and Chinese code for seismic design of buildings. The story drift angle is adopted to evaluate the deformability of structural components, and the effective stress value is employed to evaluate the strength of structural components in the method. Then, three-dimensional analysis models for underground frame structures, such as subway stations and civil defense engineering, are established and the seismic responses are calculated, including horizontal relative displacement and inner forces of structures. The seismic behaviors of these underground structures are evaluated. It can be seen from the analysis that the proposed evaluation method can be used to evaluate the seismic behaviors of underground frame structures, whereas it needs to be improved. The research results and approach are helpful for the supplementation and perfection of underground structures in Chinese code for seismic design of buildings.
  • Related Articles

    [1]Effects of occurrence form of free iron oxide on thermal conductivity of lateritic clay during drying and wetting[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240058
    [2]CHEN Yong-gui, CAI Ye-qing, YE Wei-min, CUI Yu-jun, CHEN Bao. Progresses in researches on adsorption and migration properties of bentonite colloids and their co-migration with nuclide in repository[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(12): 2149-2158. DOI: 10.11779/CJGE202112001
    [3]ZHANG Wen-jie, JIANG Feng-yong. Experimental study on effect of dissolved organic matter on mobility of soil colloids[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(11): 2013-2019. DOI: 10.11779/CJGE202111007
    [4]CAI Ye-qing, CHEN Yong-gui, YE Wei-min, CUI Yu-jun, CHEN Bao. Advances in formation of bentonite colloid and its stability in near-field of high-level radioactive waste repository[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(11): 1996-2005. DOI: 10.11779/CJGE202011004
    [5]ZHANG Wen-jie, LI Jun-tao. Investigation of co-migration of heavy metal with colloid under preferential flow[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(1): 46-52. DOI: 10.11779/CJGE202001005
    [6]ZHANG Xian-wei, KONG Ling-wei, CHEN Cheng, LI Kui-kui, LIU Yan. Effects of hydrochemistry on structural strength of Zhanjiang formation clay[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(11): 1967-1975. DOI: 10.11779/CJGE201711003
    [7]ZHANG Xian-wei, KONG Ling-wei. Interaction between iron oxide colloids and clay minerals and its effect on properties of caly[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(1): 65-74. DOI: 10.11779/CJGE201401004
    [8]CHEN Yu-long. Microstructure of expansive soil from Yunnan Province[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk1): 334-339.
    [9]TANG Chaosheng, SHI Bin, WANG Baojun. Factors affecting analysis of soil microstructure using SEM[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(4): 560-565.
    [10]WANG Baojun, SHI Bin, LIU Zhibin, CAI Yi. Fractal study on microstructure of clayey soil by GIS[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(2): 244-247.

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return