• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
HU Xiaojun. Improvement on Coulumb accurate solution of active earth pressure to cohesive soil[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(8): 1049-1052.
Citation: HU Xiaojun. Improvement on Coulumb accurate solution of active earth pressure to cohesive soil[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(8): 1049-1052.

Improvement on Coulumb accurate solution of active earth pressure to cohesive soil

More Information
  • Published Date: August 14, 2006
  • Based on sliding plane hypothesis of Coulumb earth pressure theory,Coulumb accurate solution of active earth pressure to cohesive soil was improved which considered the cohesion force on sliding surface and the adhesive force on interface of retaining wall.The improved method is simple to handle load on soil surface and calculate crack depth.Only taking Z0 to be the equal of zero,the calculation formula without considering crack on soil surface is the same as those considering crack completely.The formula is reliable and convenient.It is easy to popularize and apply for projects.
  • Related Articles

    [1]ZENG Lingling, WANG Qizhong, LIN Xiaoxin. Experimental investigation on particle migration behaviour of dredged clays with high initial water contents under vacuum pressure[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(8): 1776-1782. DOI: 10.11779/CJGE20230510
    [2]PENG Wen-ming, LI Jian, ZHANG Yan-yi, LUO Qi-xun. Experimental study on dispersion of one kind of low liquid limit clay[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S1): 121-126. DOI: 10.11779/CJGE2020S1024
    [3]WAN Xu-sheng, LAI Yuan-ming, LIAO Meng-ke. Relationship between temperature and water content of sodium saline soils without phase transformation[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(12): 2175-2181. DOI: 10.11779/CJGE201512006
    [4]CAI Zheng-yin, WU Zhi-qiang, HUANG Ying-hao, CAO Yong-yong, WEI Yan-bing. Influence of water and salt contents on strength of frozen soils[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(9): 1580-1586. DOI: 10.11779/CJGE201409002
    [5]ZHOU Qiao-yong, XIONG Bao-lin, YANG Guang-qing, LIU Wei-chao. Microstructure of low liquid limit silt[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 439-444.
    [6]HOU Tian-shun, XU Guang-li. Optimum water content models and tests of lightweight soil[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(7): 1129-1134.
    [7]CHEN Xiao-ping, ZHOU Qiu-juan, CAI Xiao-ying. Physical properties and shear strength characteristics of high liquid limit granite residual soil[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(6): 901.
    [8]WU Lijian, ZHONG Falin, WU Changxing, YANG Shiji. Study on road made by high liquid limit soil[J]. Chinese Journal of Geotechnical Engineering, 2003, 25(2): 193-195.
    [9]Zhou Hongkui. Problems on the Criterion of Liquid Limit[J]. Chinese Journal of Geotechnical Engineering, 1992, 14(6): 74-80.
    [10]Zhou Hongkui, Jiang Shuqing, Zhang Chaoying. Selection of the Standard for Liquid Limit and Plastic Limit[J]. Chinese Journal of Geotechnical Engineering, 1985, 7(4): 86-93.

Catalog

    Article views (1318) PDF downloads (492) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return