• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LIU Huabei. Analysis on seismic behavior of geogrid-reinforced retaining wall subjected to horizontal and vertical excitations[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(5): 594-599.
Citation: LIU Huabei. Analysis on seismic behavior of geogrid-reinforced retaining wall subjected to horizontal and vertical excitations[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(5): 594-599.

Analysis on seismic behavior of geogrid-reinforced retaining wall subjected to horizontal and vertical excitations

More Information
  • Published Date: May 14, 2006
  • A sand model that was capable of simulating the pressure-dependency and cyclic hardening behavior of sandy soils was used to model the back-filled soil,and a bounding surface elasto-plastic model for geosynthetics that could capture the cyclic hysteresis of geogrids was used to model the reinforcement.Slip-elements were employed to describe the soil-structure interaction behavior in the geosynthetic-reinforced soil(GRS) retaining wall.Horizontal and vertical excitations were considered simultaneously in the analyses.The study was focused on the deformation of the retaining wall and the internal forces in the reinforcements and the object of study included the effects of the vertical excitation,the reinforcement length,the reinforcement spacing,the weight of the facing blocks,the frictions between soil and facing blocks as well as those between two facing blocks.
  • Related Articles

    [1]HOU Tianshun, ZHANG Jiancheng, SHU Bo. Model tests on earth pressure at rest of light weight soil behind rigid retaining walls[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(4): 764-773. DOI: 10.11779/CJGE20220928
    [2]JIANG Ming-jie, LU Xiao-ping, ZHU Jun-gao, JI En-yue, GUO Wan-li. Method for estimating at-rest lateral pressure coefficient of coarse-grained soils[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S2): 77-81. DOI: 10.11779/CJGE2018S2016
    [3]SHANG Xiang-yu, ZHENG Xiu-zhong, ZHOU Guo-qing. Coefficient B of saturated clay under high pressure[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(3): 532-536. DOI: 10.11779/CJGE201503018
    [4]LI Guo-wei, HU Jian, LU Xiao-cen, ZHOU Yang. One-dimensional secondary consolidation coefficient and lateral pressure coefficient of overconsolidated soft clay[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(12): 2198-2205.
    [5]JIA Ning. Coefficient of at-rest earth pressure from limited backfill[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(7): 1333-1337.
    [6]ZHENG Jun-jie, MA Qiang, ZHANG Jun. Calculation of vertical earth pressure on load reduction culverts under embankments by reinforcement[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(7): 1135-1141.
    [7]Model tests and theoretical studies on earth pressure on shallow positive buried culverts[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(7).
    [8]TANG Shidong, Lv Jianchun, FU Zong. Solution to initial horizontal stress and lateral earth pressure coefficient at rest by flat dilatometer tests[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(12): 2144-2148.
    [9]GAO Jiangping, YU Maohong, HU Changshun, CHEN Zhongda. Study on the distributive rule of the earth pressure and its coefficient of the reinforced earth wall[J]. Chinese Journal of Geotechnical Engineering, 2003, 25(5): 582-584.
    [10]Peng Dapeng. Probability Analysis of Soil Pressure Coefficient[J]. Chinese Journal of Geotechnical Engineering, 1994, 16(6): 117-122.

Catalog

    Article views (1261) PDF downloads (521) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return