• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
SHANG Xiang-yu, ZHENG Xiu-zhong, ZHOU Guo-qing. Coefficient B of saturated clay under high pressure[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(3): 532-536. DOI: 10.11779/CJGE201503018
Citation: SHANG Xiang-yu, ZHENG Xiu-zhong, ZHOU Guo-qing. Coefficient B of saturated clay under high pressure[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(3): 532-536. DOI: 10.11779/CJGE201503018

Coefficient B of saturated clay under high pressure

More Information
  • Received Date: June 10, 2014
  • Published Date: March 23, 2015
  • In order to make an investigation into the possible difference in coefficient B of saturated clay under high and normal pressures and the relevant contributory factors, isotropic consolidation tests on saturated clay under pressures of 2 MPa are conducted by GDS triaxial apparatus, and a novel test procedure is designed to check coefficient B before and after consolidation. The test results indicate that the reason for unusually small coefficient B of “saturated” clay after high-pressure consolidation is that the soil sample cannot reach 100% ideal saturation, rather than, as reported previously, the majority of the pore water in high pressure consolidation sample being bound water whose physical characteristics obviously differ from those of bulk water. In addition, the complete dissipation of the pore water pressure significantly lags behind the end of the primary consolidation in volume-logarithmic time curve during high pressure consolidation tests on saturated clay, and the process of coefficient B of consolidated clay under high pressure getting to be stable takes much longer time than that under normal pressure.
  • [1]
    张永双, 曲永新. 鲁西南地区上第三系硬黏土的工程特性及工程环境效应研究[J]. 岩土工程学报, 2000, 22(4): 446-449. (ZHANG Yong-shuang, QU Yong-xin. Study on the engineering properties and engineering-environmental effects of neogene hard clays in south-west of Shandong province[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(4): 446-449. (in Chinese))
    [2]
    许延春. 深部饱和黏土的力学性质特征[J]. 煤炭学报, 2004, 29(1): 26-30. (XU Yan-chun. Mechanics characteristics of deep saturated clay[J]. Journal of China Coal Society, 2004, 29(01): 26-30. (in Chinese))
    [3]
    马金荣, 秦 勇, 周国庆. 黏土的高压三轴剪切特性研究[J]. 中国矿业大学学报, 2008, 37(2): 176-179. (MA Jin-rong, QIN Yong, ZHOU Guo-qing. Research on tri-axial shear properties of clay under high pressures[J]. Journal of China University of Mining & Technology, 2008, 37(2): 176-179. (in Chinese))
    [4]
    商翔宇, 余海岁, 周国庆, 等. 高应力水平下深部黏土力学特性微观分析[J]. 岩土工程学报, 2012, 34(2): 363-368. (SHANG Xiang-yu, YU Hai-sui, ZHOU Guo-qing, et al. Micro analysis of mechanical characteristics of deep clay under high stress level[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(2): 363-368. (in Chinese))
    [5]
    李文平. 饱水黏性土高压密实过程中孔压及体应变变化试验研究[J]. 岩土工程学报, 1999, 21(6): 666-669. (LI Wen-ping. Variation of pore water pressure and volume strain of saturated clayey soil during high pressure compression test[J]. Chinese Journal of Geotechnical Engineering, 1999, 21(6): 666-669. (in Chinese))
    [6]
    殷家瑜, 赖安宁, 姜 朴. 高应力下尾矿砂的强度与变形特性[J]. 岩土工程学报, 1980, 2(2): 1-10. (YIN Jia-yu, LAI An-ning, JIANG Pu. Strength and deformation characteristics of tailing under high pressure[J]. Chinese Journal of Geotechnical Engineering, 1980, 2(2): 1-10. (in Chinese))
    [7]
    三浦哲彦, 山本哲郎. 砂の高压三轴压缩试验の结果に及ぼす2、3の要因にっぃて[M]// 日本土质工学会论文报告集, 1976, 16(3): 123-128. (MIURA Norihiko, YAMAMOTO Tetsuro. Some factors affecting the results of high pressure triaxial test on sands[M]// Mechanics and Foundation Engineering, 1976, 16(3): 123-128. (in Japanses))
    [8]
    SKEMPTON A W. The pore-pressure coefficients A and B [J]. Géotechnique, 1954, 4(4): 143-147.
    [9]
    GRAHAM J. The effective stress concept in saturated sand clay buffer[J]. Canadian Geotechnical Journal, 1992, 29: 1033-1043.
    [10]
    JIANG Ming-Jing. Pre-failure behavior of deep Situated Osaka clays[J]. China Ocean Engineering, 1998, 12(4): 453-565.
    [11]
    SKEMPTON A W. Effective stress in soils, concrete and rocks[C]// Proceedings of the Conference on Pore Pressure and Suction in Soils. London, 1960: 4-16.
    [12]
    BISHOP A W. The influence of an undrained change in stress on the pore pressure in porous media of low compressibility[J]. Géotechnique, 1973, 23(3): 435-442.
    [13]
    LADE P V, DE BOER R. The concept of effective stress for soil, concrete and rock[J]. Géotechnique, 1997, 47(1): 61-78.
    [14]
    陈晶晶, 雷国辉. 决定饱和岩土材料变形的有效应力及孔压系数[J]. 岩土力学, 2012, 33(12): 3696-3703. (CHEN Jing-jing, LEI Guo-hui. Effective stress and pore pressure coefficient controlling the deformation of saturated geomaterials[J]. Rock and Soil Mechanics, 2012, 33(12): 3696-3703. (in Chinese))
    [15]
    OKA F. Validity and limits of the effective stress concept in geomechanics[J]. Mechanics of Cohesive-Frictional Materials, 1996, 1: 219-234.
    [16]
    AKAI K, ADACHI T, NISHI K. Mechanical properties of soft rocks[C]// Proc 9th ICSMFE. Yokyo, JSSMFE, 1977: 7-10.
    [17]
    BISHOP A W. The measurement of soil properties in the triaxial test[M]. London: Edward Arnold Publishers LTD, 1957: 131-136.
    [18]
    BLACK D K, LEE K L. Saturating laboratory sample by back pressure[J]. Journal of Soil Mechanics and Foundations Division, 1973, 99: 75-93.
    [19]
    娄 炎. 孔隙水压力系数与饱和度的关系[J]. 岩土工程学报, 1985, 7(3): 62-67. (LOU Yan. The relationship of pore water coefficient and saturability[J]. Chinese Journal of Geotechnical Engineering, 1985, 7(3): 62-67. (in Chinese))
    [20]
    王志玲, 方涤华, 吕洪予. 击实黏土固结前后孔隙水压力系数的变化及对强度特性的影响[J]. 岩土工程学报, 1996, 18(2): 47-54. (WANG Zhi-ling, FANG Di-hua, LÜ Hong-yu. Pore pressure parameter of compacted clay consolidation and its effect on strength properties[J]. Chinese Journal of Geotechnical Engineering, 1996, 18(2): 47-54. (in Chinese))
    [21]
    SHANG Xiang-yu, ZHOU Guo-qing, KUANG Lian-fei, et al. Compressibility of deep clay in East China subjected to a wide range of consolidation stresses[J]. Canadian Geotechnical Journal, 2014, 52(10): 1139.
    [22]
    李文平, 于双忠, 王柏荣, 等. 煤矿区深部黏性土吸附结合水含量测定及其意义[J]. 水文地质工程地质, 1995, 22(3): 31-34. (LI Weng-ping, YU Shuang-zhong, WANG Bai-rong, et al. The measurement and significance on adsorbed bound water of deep cohesive clay in diggings[J]. Hydrogeology & Engineering Geology, 1995, 22(3): 31-34. (in Chinese))
    [23]
    钱家欢, 殷宗泽. 土工原理与计算[M]. 北京: 中国水利水电出版社, 2007. (QIAN Jia-huan, YIN Zong-ze. Theory and numerical calculation of soil engineering[M]. Beijing: China Water Power Press, 2007. (in Chinese))
  • Related Articles

    [1]JIANG Lusha, PU Hefu, MIN Ming, QIU Jinwei, CHEN Xiaoxiong. Sorption properties of polymer-modified bentonite to Pb(Ⅱ) ions[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(S2): 54-59. DOI: 10.11779/CJGE2024S20018
    [2]ZHANG Wen-jie, JIANG Feng-yong. Experimental study on effect of dissolved organic matter on mobility of soil colloids[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(11): 2013-2019. DOI: 10.11779/CJGE202111007
    [3]XU Fei, CAI Yue-bo, QIAN Wen-xun, WEI Hua, ZHUANG Hua-xia. Mechanism of cemented soil modified by aliphatic ionic soil stabilizer[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(9): 1679-1687. DOI: 10.11779/CJGE201909012
    [4]HUANG Wei, LIU Qing-bing, XIANG Wei, ZHANG Yun-long, WANG Zhen-hua, DAO Minh Huan. Water adsorption characteristics and water retention model for montmorillonite modified by ionic soil stabilizer[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(1): 121-130. DOI: 10.11779/CJGE201901013
    [5]HE Shun-hui, XIE Shi-ping, ZHANG Jiang. Adsorption and isolation of GCL on copper ions[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(zk1): 79-82. DOI: 10.11779/CJGE2016S1014
    [6]LIU Qing-bing, XIANG Wei, CUI De-shan. Effect of ionic soil stabilizer on bound water of expansive soils[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(10): 1887-1895.
    [7]LIU Qing-bing, XIANG Wei, CUI De-shan, CAO Li-jing. Mechanism of expansive soil improved by ionic soil stabilizer[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(4): 648.
    [8]Experimental study on reducing thickness of adsorbed water layer for red clay particles treated by ionic soil stabilizer[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(6).
    [9]NING Jianguo, HUANG Xin, XU Sheng. Effect of pH value of soil on strength increasing of the stabilized soil[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(1): 98-102.
    [10]Zhang Huiming, Zeng Qiaoling. Steady state strength of sand:concepts and experiment[J]. Chinese Journal of Geotechnical Engineering, 1999, 21(2): 95-100.
  • Cited by

    Periodical cited type(8)

    1. 陈星,黄涛,彭道平,赵锐,刘运. 赤泥渗滤液对GCL多尺度孔隙结构及防渗性能影响. 安全与环境学报. 2024(01): 290-301 .
    2. 冯斌,徐滨. GCL膨润土衬垫膨胀量对渗透性能的影响. 新型建筑材料. 2024(03): 121-124 .
    3. 李天义,孙德安,傅贤雷,陈征,汪磊,杜延军. 考虑时变污染源与土工膜破损的污染物二维迁移特性. 岩土工程学报. 2024(11): 2450-2456 . 本站查看
    4. 林海,时花豹,周创兵,吕志涛. 黏土-膨润土混合土衬里的渗透特性试验研究. 材料导报. 2024(23): 96-101 .
    5. 刘志彬,王宇婷,罗婷倚,唐亚森,谢世平. GCL用于路基水分场调控可行性及铺设位置优化分析. 重庆交通大学学报(自然科学版). 2023(12): 53-60 .
    6. 王亮,杨华展,吴舒畅,罗昊进,汤泽和,于俊赞,丁昊,朱世俊. 市政污水管道渗漏污染物迁移数学解析模型. 给水排水. 2022(09): 117-123 .
    7. 倪佳琪,詹良通,冯嵩,孔令刚,丰田. 压实钢渣-膨润土覆盖防渗材料试验研究. 浙江大学学报(工学版). 2022(12): 2478-2486 .
    8. 康祺祯,李静静,李育超,姚士元,陈云敏. PAA-Na改性膨润土在酸碱盐溶液中的渗透性. 浙江大学学报(工学版). 2021(10): 1877-1884+1921 .

    Other cited types(1)

Catalog

    Article views PDF downloads Cited by(9)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return