Citation: | SHANG Xiang-yu, ZHENG Xiu-zhong, ZHOU Guo-qing. Coefficient B of saturated clay under high pressure[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(3): 532-536. DOI: 10.11779/CJGE201503018 |
[1] |
张永双, 曲永新. 鲁西南地区上第三系硬黏土的工程特性及工程环境效应研究[J]. 岩土工程学报, 2000, 22(4): 446-449. (ZHANG Yong-shuang, QU Yong-xin. Study on the engineering properties and engineering-environmental effects of neogene hard clays in south-west of Shandong province[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(4): 446-449. (in Chinese))
|
[2] |
许延春. 深部饱和黏土的力学性质特征[J]. 煤炭学报, 2004, 29(1): 26-30. (XU Yan-chun. Mechanics characteristics of deep saturated clay[J]. Journal of China Coal Society, 2004, 29(01): 26-30. (in Chinese))
|
[3] |
马金荣, 秦 勇, 周国庆. 黏土的高压三轴剪切特性研究[J]. 中国矿业大学学报, 2008, 37(2): 176-179. (MA Jin-rong, QIN Yong, ZHOU Guo-qing. Research on tri-axial shear properties of clay under high pressures[J]. Journal of China University of Mining & Technology, 2008, 37(2): 176-179. (in Chinese))
|
[4] |
商翔宇, 余海岁, 周国庆, 等. 高应力水平下深部黏土力学特性微观分析[J]. 岩土工程学报, 2012, 34(2): 363-368. (SHANG Xiang-yu, YU Hai-sui, ZHOU Guo-qing, et al. Micro analysis of mechanical characteristics of deep clay under high stress level[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(2): 363-368. (in Chinese))
|
[5] |
李文平. 饱水黏性土高压密实过程中孔压及体应变变化试验研究[J]. 岩土工程学报, 1999, 21(6): 666-669. (LI Wen-ping. Variation of pore water pressure and volume strain of saturated clayey soil during high pressure compression test[J]. Chinese Journal of Geotechnical Engineering, 1999, 21(6): 666-669. (in Chinese))
|
[6] |
殷家瑜, 赖安宁, 姜 朴. 高应力下尾矿砂的强度与变形特性[J]. 岩土工程学报, 1980, 2(2): 1-10. (YIN Jia-yu, LAI An-ning, JIANG Pu. Strength and deformation characteristics of tailing under high pressure[J]. Chinese Journal of Geotechnical Engineering, 1980, 2(2): 1-10. (in Chinese))
|
[7] |
三浦哲彦, 山本哲郎. 砂の高压三轴压缩试验の结果に及ぼす2、3の要因にっぃて[M]// 日本土质工学会论文报告集, 1976, 16(3): 123-128. (MIURA Norihiko, YAMAMOTO Tetsuro. Some factors affecting the results of high pressure triaxial test on sands[M]// Mechanics and Foundation Engineering, 1976, 16(3): 123-128. (in Japanses))
|
[8] |
SKEMPTON A W. The pore-pressure coefficients A and B [J]. Géotechnique, 1954, 4(4): 143-147.
|
[9] |
GRAHAM J. The effective stress concept in saturated sand clay buffer[J]. Canadian Geotechnical Journal, 1992, 29: 1033-1043.
|
[10] |
JIANG Ming-Jing. Pre-failure behavior of deep Situated Osaka clays[J]. China Ocean Engineering, 1998, 12(4): 453-565.
|
[11] |
SKEMPTON A W. Effective stress in soils, concrete and rocks[C]// Proceedings of the Conference on Pore Pressure and Suction in Soils. London, 1960: 4-16.
|
[12] |
BISHOP A W. The influence of an undrained change in stress on the pore pressure in porous media of low compressibility[J]. Géotechnique, 1973, 23(3): 435-442.
|
[13] |
LADE P V, DE BOER R. The concept of effective stress for soil, concrete and rock[J]. Géotechnique, 1997, 47(1): 61-78.
|
[14] |
陈晶晶, 雷国辉. 决定饱和岩土材料变形的有效应力及孔压系数[J]. 岩土力学, 2012, 33(12): 3696-3703. (CHEN Jing-jing, LEI Guo-hui. Effective stress and pore pressure coefficient controlling the deformation of saturated geomaterials[J]. Rock and Soil Mechanics, 2012, 33(12): 3696-3703. (in Chinese))
|
[15] |
OKA F. Validity and limits of the effective stress concept in geomechanics[J]. Mechanics of Cohesive-Frictional Materials, 1996, 1: 219-234.
|
[16] |
AKAI K, ADACHI T, NISHI K. Mechanical properties of soft rocks[C]// Proc 9th ICSMFE. Yokyo, JSSMFE, 1977: 7-10.
|
[17] |
BISHOP A W. The measurement of soil properties in the triaxial test[M]. London: Edward Arnold Publishers LTD, 1957: 131-136.
|
[18] |
BLACK D K, LEE K L. Saturating laboratory sample by back pressure[J]. Journal of Soil Mechanics and Foundations Division, 1973, 99: 75-93.
|
[19] |
娄 炎. 孔隙水压力系数与饱和度的关系[J]. 岩土工程学报, 1985, 7(3): 62-67. (LOU Yan. The relationship of pore water coefficient and saturability[J]. Chinese Journal of Geotechnical Engineering, 1985, 7(3): 62-67. (in Chinese))
|
[20] |
王志玲, 方涤华, 吕洪予. 击实黏土固结前后孔隙水压力系数的变化及对强度特性的影响[J]. 岩土工程学报, 1996, 18(2): 47-54. (WANG Zhi-ling, FANG Di-hua, LÜ Hong-yu. Pore pressure parameter of compacted clay consolidation and its effect on strength properties[J]. Chinese Journal of Geotechnical Engineering, 1996, 18(2): 47-54. (in Chinese))
|
[21] |
SHANG Xiang-yu, ZHOU Guo-qing, KUANG Lian-fei, et al. Compressibility of deep clay in East China subjected to a wide range of consolidation stresses[J]. Canadian Geotechnical Journal, 2014, 52(10): 1139.
|
[22] |
李文平, 于双忠, 王柏荣, 等. 煤矿区深部黏性土吸附结合水含量测定及其意义[J]. 水文地质工程地质, 1995, 22(3): 31-34. (LI Weng-ping, YU Shuang-zhong, WANG Bai-rong, et al. The measurement and significance on adsorbed bound water of deep cohesive clay in diggings[J]. Hydrogeology & Engineering Geology, 1995, 22(3): 31-34. (in Chinese))
|
[23] |
钱家欢, 殷宗泽. 土工原理与计算[M]. 北京: 中国水利水电出版社, 2007. (QIAN Jia-huan, YIN Zong-ze. Theory and numerical calculation of soil engineering[M]. Beijing: China Water Power Press, 2007. (in Chinese))
|
[1] | JIANG Lusha, PU Hefu, MIN Ming, QIU Jinwei, CHEN Xiaoxiong. Sorption properties of polymer-modified bentonite to Pb(Ⅱ) ions[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(S2): 54-59. DOI: 10.11779/CJGE2024S20018 |
[2] | ZHANG Wen-jie, JIANG Feng-yong. Experimental study on effect of dissolved organic matter on mobility of soil colloids[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(11): 2013-2019. DOI: 10.11779/CJGE202111007 |
[3] | XU Fei, CAI Yue-bo, QIAN Wen-xun, WEI Hua, ZHUANG Hua-xia. Mechanism of cemented soil modified by aliphatic ionic soil stabilizer[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(9): 1679-1687. DOI: 10.11779/CJGE201909012 |
[4] | HUANG Wei, LIU Qing-bing, XIANG Wei, ZHANG Yun-long, WANG Zhen-hua, DAO Minh Huan. Water adsorption characteristics and water retention model for montmorillonite modified by ionic soil stabilizer[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(1): 121-130. DOI: 10.11779/CJGE201901013 |
[5] | HE Shun-hui, XIE Shi-ping, ZHANG Jiang. Adsorption and isolation of GCL on copper ions[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(zk1): 79-82. DOI: 10.11779/CJGE2016S1014 |
[6] | LIU Qing-bing, XIANG Wei, CUI De-shan. Effect of ionic soil stabilizer on bound water of expansive soils[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(10): 1887-1895. |
[7] | LIU Qing-bing, XIANG Wei, CUI De-shan, CAO Li-jing. Mechanism of expansive soil improved by ionic soil stabilizer[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(4): 648. |
[8] | Experimental study on reducing thickness of adsorbed water layer for red clay particles treated by ionic soil stabilizer[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(6). |
[9] | NING Jianguo, HUANG Xin, XU Sheng. Effect of pH value of soil on strength increasing of the stabilized soil[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(1): 98-102. |
[10] | Zhang Huiming, Zeng Qiaoling. Steady state strength of sand:concepts and experiment[J]. Chinese Journal of Geotechnical Engineering, 1999, 21(2): 95-100. |
1. |
陈星,黄涛,彭道平,赵锐,刘运. 赤泥渗滤液对GCL多尺度孔隙结构及防渗性能影响. 安全与环境学报. 2024(01): 290-301 .
![]() | |
2. |
冯斌,徐滨. GCL膨润土衬垫膨胀量对渗透性能的影响. 新型建筑材料. 2024(03): 121-124 .
![]() | |
3. |
李天义,孙德安,傅贤雷,陈征,汪磊,杜延军. 考虑时变污染源与土工膜破损的污染物二维迁移特性. 岩土工程学报. 2024(11): 2450-2456 .
![]() | |
4. |
林海,时花豹,周创兵,吕志涛. 黏土-膨润土混合土衬里的渗透特性试验研究. 材料导报. 2024(23): 96-101 .
![]() | |
5. |
刘志彬,王宇婷,罗婷倚,唐亚森,谢世平. GCL用于路基水分场调控可行性及铺设位置优化分析. 重庆交通大学学报(自然科学版). 2023(12): 53-60 .
![]() | |
6. |
王亮,杨华展,吴舒畅,罗昊进,汤泽和,于俊赞,丁昊,朱世俊. 市政污水管道渗漏污染物迁移数学解析模型. 给水排水. 2022(09): 117-123 .
![]() | |
7. |
倪佳琪,詹良通,冯嵩,孔令刚,丰田. 压实钢渣-膨润土覆盖防渗材料试验研究. 浙江大学学报(工学版). 2022(12): 2478-2486 .
![]() | |
8. |
康祺祯,李静静,李育超,姚士元,陈云敏. PAA-Na改性膨润土在酸碱盐溶液中的渗透性. 浙江大学学报(工学版). 2021(10): 1877-1884+1921 .
![]() |