• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
XU Guanghui, GAO Hui, WANG Zheren. Analysis of continuous dynamic monitoring on vibrating compaction process of graded broken stone[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(11): 35-37.
Citation: XU Guanghui, GAO Hui, WANG Zheren. Analysis of continuous dynamic monitoring on vibrating compaction process of graded broken stone[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(11): 35-37.

Analysis of continuous dynamic monitoring on vibrating compaction process of graded broken stone

More Information
  • Published Date: November 14, 2005
  • The resistance of graded broken stone to vibratile compacter was used to study the change of compaction state by analyzing the interaction between vibrating compacter and graded broken stone with dynamics.Utilizing state identification theory and automatic testing technology,the resistance reflecting the change of compaction state during compacting process was obtained by continuous testing the interaction.the quality of compaction could be judged and the relation between resistance and density of material could be obtained by the change of resistance of graded broken stone.Through the tradition that density must be used to appraise the compaction state of material was abandoned,and the basis for continuous monitoring the compaction quality of graded broken stone subgrade in-site was established.
  • Related Articles

    [1]Effects of occurrence form of free iron oxide on thermal conductivity of lateritic clay during drying and wetting[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240058
    [2]CHEN Yong-gui, CAI Ye-qing, YE Wei-min, CUI Yu-jun, CHEN Bao. Progresses in researches on adsorption and migration properties of bentonite colloids and their co-migration with nuclide in repository[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(12): 2149-2158. DOI: 10.11779/CJGE202112001
    [3]ZHANG Wen-jie, JIANG Feng-yong. Experimental study on effect of dissolved organic matter on mobility of soil colloids[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(11): 2013-2019. DOI: 10.11779/CJGE202111007
    [4]CAI Ye-qing, CHEN Yong-gui, YE Wei-min, CUI Yu-jun, CHEN Bao. Advances in formation of bentonite colloid and its stability in near-field of high-level radioactive waste repository[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(11): 1996-2005. DOI: 10.11779/CJGE202011004
    [5]ZHANG Wen-jie, LI Jun-tao. Investigation of co-migration of heavy metal with colloid under preferential flow[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(1): 46-52. DOI: 10.11779/CJGE202001005
    [6]ZHANG Xian-wei, KONG Ling-wei, CHEN Cheng, LI Kui-kui, LIU Yan. Effects of hydrochemistry on structural strength of Zhanjiang formation clay[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(11): 1967-1975. DOI: 10.11779/CJGE201711003
    [7]ZHANG Xian-wei, KONG Ling-wei. Interaction between iron oxide colloids and clay minerals and its effect on properties of caly[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(1): 65-74. DOI: 10.11779/CJGE201401004
    [8]CHEN Yu-long. Microstructure of expansive soil from Yunnan Province[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk1): 334-339.
    [9]TANG Chaosheng, SHI Bin, WANG Baojun. Factors affecting analysis of soil microstructure using SEM[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(4): 560-565.
    [10]WANG Baojun, SHI Bin, LIU Zhibin, CAI Yi. Fractal study on microstructure of clayey soil by GIS[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(2): 244-247.

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return