Citation: | WANG Lanmin, XU Shiyang, WANG Ping, WANG Rui, CHE Ailan, ZHOU Yanguo, WU Zhijian, WANG Qian, PU Xiaowu, CHAI Shaofeng, MA Xingyu. Characteristics and lessons of liquefaction-triggered large-scale flow slide in loess deposit during Jishishan M6.2 earthquake in 2023[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(2): 235-243. DOI: 10.11779/CJGE20240038 |
[1] |
WANG L M, WU Z J, XIA K, et al. Amplification of thickness and topography of loess deposit on seismic ground motion and its seismic design methods[J]. Soil Dynamics and Earthquake Engineering, 2019, 126: 105090. doi: 10.1016/j.soildyn.2018.02.021
|
[2] |
白铭学, 张苏民. 高烈度地震时黄土地层的液化移动[J]. 工程勘察, 1990, 18(6): 1-5.
BAI Mingxue, ZHANG Sumin. Landslide induced by liquefaction of loessial soil during earthquake of high intensity[J]. Geotechnical Investigation and Surveying, 1990, 18(6): 1-5. (in Chinese)
|
[3] |
王兰民. 黄土动力学[M]. 北京: 地震出版社, 2003.
WANG Lanmin. Loess Dynamics[M]. Beijing: Seismological Press, 2003. (in Chinese)
|
[4] |
WANG L M, ZHANG Z, LI L, et al. Laboratory study on loess liquefaction[C]// The Proceedings of Eleventh World Conference on Earthquake Engineering, Alcapulco, 1996.
|
[5] |
王兰民. 黄土地层大规模地震液化滑移的机理与风险评估[J]. 岩土工程学报, 2020, 42(1): 1-19. doi: 10.11779/CJGE202001001
WANG Lanmin. Mechanism and risk evaluation of sliding flow triggered by liquefaction of loess deposit during earthquakes[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(1): 1-19. (in Chinese) doi: 10.11779/CJGE202001001
|
[6] |
赵晋泉, 张大卫, 高树义, 等. 1303年山西洪洞8级大地震郇堡地滑之研究[J]. 山西地震, 2003(3): 17-23.
ZHAO Jinquan, ZHANG Dawei, GAO Shuyi, et al. Huanbu ground slide, the relic of 1303 Hongtong, Shanxi, earthquake of M8[J]. Earthquake Research in Shanxi, 2003(3): 17-23. (in Chinese)
|
[7] |
王兰民, 柴少峰, 薄景山, 等. 黄土地震滑坡的触发类型、特征与成灾机制[J]. 岩土工程学报, 2023, 45(8): 1543-1554. doi: 10.11779/CJGE20220531
WANG Lanmin, CHAI Shaofeng, BO Jingshan, et al. Triggering types, characteristics and disaster mechanism of seismic loess landslides[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(8): 1543-1554. (in Chinese) doi: 10.11779/CJGE20220531
|
[8] |
ISHIHARA K, OKUSA S, OYAGI N, et al. Liquefaction-induced flow slide in the collapsible loess deposit in soviet Tajik[J]. Soils and Foundations, 1990, 30(4): 73-89. doi: 10.3208/sandf1972.30.4_73
|
[9] |
王钟琦, 谢君斐, 石兆吉. 地震工程地质导论[M]. 北京: 地震出版社, 1983.
WANG Zhongqi, XIE Junfei, SHI Zhaoji. Introduction to Earthquake Engineering Geology[M]. Beijing: Seismological Press, 1983. (in Chinese)
|
[10] |
陈文化. 地震液化流滑震害[J]. 自然灾害学报, 2001, 10(4): 88-93.
CHEN Wenhua. Slipping disaster induced by seismic liquefaction[J]. Journal of Natural Disasters, 2001, 10(4): 88-93. (in Chinese)
|
[11] |
ZHANG J M, WANG G. Large post-liquefaction deformation of sand, part Ⅰ: physical mechanism, constitutive description and numerical algorithm[J]. Acta Geotechnica, 2012, 7(2): 69-113.
|
[12] |
张建民. 砂土动力学若干基本理论探究[J]. 岩土工程学报, 2012, 34(1): 1-50. http://cge.nhri.cn/cn/article/id/14487
ZHANG Jianmin. New advances in basic theories of sand dynamics[J]. Chinese Journal of Geotechnical Engeering, 2012, 34(1): 1-50. (in Chinese) http://cge.nhri.cn/cn/article/id/14487
|
[1] | YU Yan-yan, DING Hai-ping, LIU Qi-fang. Effects of impedance ratio between basin sediment and surrounding rock on seismic ground motions and basin-induced Rayleigh waves[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(4): 667-677. DOI: 10.11779/CJGE202004009 |
[2] | LI Rui-shan, YUAN Xiao-ming. Theoretical solution of site amplification coefficient[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(6): 1066-1073. DOI: 10.11779/CJGE201906010 |
[3] | CHEN Guo-xing, LIU Xue-ning, ZHU Jiao, JIN Dan-dan, XU Han-gang. Spatial variation of predominant periods of site and amplifications of peak ground accelerations for deep sediment layers: case study of Suzhou City[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(6): 996-1004. DOI: 10.11779/CJGE201906002 |
[4] | GAO Yu-feng. Analytical models and amplification effects of seismic wave propagation in canyon sites[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(1): 1-25. DOI: 10.11779/CJGE201901001 |
[5] | ZHOU Yan-guo, TAN Xiao-ming, CHEN Jie, PEI Xiang-jun, CHEN Yun-min. Observations and analyses of site amplification effects of deep liquefiable soil deposits by geotechnical downhole array[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(7): 1282-1291. DOI: 10.11779/CJGE201707015 |
[6] | JIANG Zhi-jun, HU Jin-jun, ZHANG Qi, XIE Li-li. Site amplification factor model for Sichuan region considering nonlinear soil effects[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(9): 1650-1659. DOI: 10.11779/CJGE201609012 |
[7] | LI Ping, BO Jing-shan, LI Xiao-bo, XIAO Rui-jie. Amplification effect of soil sites on ground motion in Anning River valley and Qionghai Lake area[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(2): 362-369. DOI: 10.11779/CJGE201602022 |
[8] | ZHU Jiao, CHEN Guo-xing, XU Han-gang. Effect of seismic bedrock interface depth on surface motion parameters of deep site[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(11): 2079-2087. DOI: 10.11779/CJGE201511020 |
[9] | CHEN Guoxing, ZHUANG Haiyang, XU Ye. A study on influence of excavated shallow tunnel on design parameters of ground motion in the soft site[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(6): 739-744. |
[10] | GAO Guangyun, YUE Zhongqi, Tham L. G., QIU Chang. Theoretical analysis of unusual vibration amplification in barrier protected zone[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(5): 565-568. |