Citation: | LI Rui-shan, YUAN Xiao-ming. Theoretical solution of site amplification coefficient[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(6): 1066-1073. DOI: 10.11779/CJGE201906010 |
[1] |
SEED H B, ROMO M P, SUN J I, et al.The Mexico earthquake of September 19, 1985: relationships between soil conditions and earthquake ground motions[J]. Earthquake Spectra, 1988, 4(4): 687-729.
|
[2] |
HANKS T C, BRADY A G.The loma prieta earthquake, ground motion, and damage in Oakland, Treasure Island, and San Francisco[J]. Bulletin of the Seismological Society of America, 1991, 81(5): 2019-2047.
|
[3] |
GAO S, LIU H, DAVIS P M, et al.Localized amplification of seismic waves and correlation with damage due to the Northridge earthquake: evidence for focusing in Santa Monica[J]. Bulletin of the Seismological Society of America, 1996, 86(1B): S209-S230.
|
[4] |
KIM B, HASHASH Y M A. Site response analysis using downhole array recordings during the March 2011 Tohoku-Oki earthquake and the effect of long-duration ground motions[J]. Earthquake Spectra, 2013, 29(S1): S37-S54.
|
[5] |
薄景山, 李秀领, 刘德东, 等. 土层结构对反应谱平台值的影响[J]. 地震工程与工程振动, 2003, 23(4): 29-33.
(BO Jing-shan, LI Xiu-ling, LIU De-dong, et al.Effects of soil layer construction on platform value of response spectra[J]. Earthquake Engineering and Engineering Vibration, 2003, 23(4): 29-33. (in Chinese)) |
[6] |
薄景山, 李秀领, 刘红帅. 土层结构对地表加速度峰值的影响[J]. 地震工程与工程振动, 2003, 23(3): 35-40.
(BO Jing-shan, LI Xiu-ling, LIU Hong-shuai.Effects of soil layer construction on peak accelerations of ground motions[J]. Earthquake Engineering and Engineering Vibration, 2003, 23(3): 35-40. (in Chinese)) |
[7] |
DARRAGH R B, SHAKAL A F.The site response of two rock and soil station pairs to strong and weak ground motion[J]. Bulletin of the Seismological Society of America, 1991, 81(5): 1885-1899.
|
[8] |
AKI K.Local site effects on weak and strong ground motion[J]. Tectonophysics, 1993, 218(1): 93-111.
|
[9] |
KOKUSHO T, SATO K.Surface-to-base amplification evaluated from KiK-net vertical array strong motion records[J]. Soil Dynamics and Earthquake Engineering, 2008, 28(9): 707-716.
|
[10] |
郭晓云, 薄景山, 巴文辉. 汶川地震不同场地反应谱平台值统计分析[J]. 地震工程与工程振动, 2012, 32(4): 54-62.
(GUO Xiao-yun, BO Jin-shan, BA Wen-hui.Statistical analysis of peak flat values of response spectra in different site condition based on Wenchuan strong ground motions[J]. Earthquake Engineering and Engineering Vibration, 2012, 32(4): 54-62. (in Chinese)) |
[11] |
崔昊, 丁海平. 基于KiK-net强震记录的场地调整系数估计[J]. 地震工程与工程振动, 2016, 36(4): 147-152.
(CUI Hao, DING Hai-ping.Estimation of site coefficient based on KiK-net strong-motion seismograph network[J]. Earthquake Engineering and Engineering Dynamics, 2016, 36(4): 147-152. (in Chinese)) |
[12] |
HWANG H H M, LIN H, HUO J R. Site coefficients for design of buildings in eastern United States[J]. Soil Dynamics and Earthquake Engineering, 1997, 16(1): 29-40.
|
[13] |
李小军, 彭青. 不同类别场地地震动参数的计算分析. 地震工程与工程振动, 2001, 21(1): 29-36.
(LI Xiao-jun, PENG Qing.Calculation and analysis of earthquake ground motion parameters for different site categories[J]. Earthquake Engineering and Engineering Vibration, 2001, 21(1): 29-36. (in Chinese)) |
[14] |
吕悦军, 彭艳菊, 兰景岩, 等. 场地条件对地震动参数影响的关键问题[J]. 震灾防御技术, 2008, 3(2): 126-135.
(LU Yue-jun, PENG Yan-ju, LAN Jing-yan, et al.Some key problems about site effects on seismic ground motion parameters[J]. Technology for Earthquake Disaster Prevention, 2008, 3(2): 126-135. (in Chinese)) |
[15] |
李瑞山. 新一代土层地震反应分析方法研究[D]. 哈尔滨: 中国地震局工程力学研究所, 2016.
(LI Rui-shan.Research on a new generation technique for ground seismic response analysis[D]. Harbin: Institute of Engineering Mechanics, China Earthquake Administration, 2016. (in Chinese)) |
[16] |
KAKLAMANOS J, BAISE L G, THOMPSON E M, et al.Comparison of 1D linear, equivalent-linear, and nonlinear site response models at six KiK-net validation sites[J]. Soil Dynamics and Earthquake Engineering, 2015, 69: 207-219.
|
[17] |
王亮. 基于KiK-net强震台网的土层地震动特性研究[D]. 哈尔滨: 中国地震局工程力学研究所, 2014.
(WANG Liang.The research of soil layer seismic characteristic based on KiK-net strong-motion network[D]. Harbin: Institute of Engineering Mechanics, China Earthquake Administration, 2014. (in Chinese)) |
[18] |
GRIFFITHS S C, COX B R, RATHJE E M.Challenges associated with site response analyses for soft soils subjected to high-intensity input ground motions[J]. Soil Dynamics and Earthquake Engineering, 2016, 85: 1-10.
|
[19] |
袁晓铭, 李瑞山, 孙锐. 新一代土层地震反应分析方法[J]. 土木工程学报, 2016, 49(10): 95-102, 122.(YUAN Xiao-ming, LI Rui-shan, SUN Rui. A new generation method for earthquake response analysis of soil layers[J]. China Civil Engineering Journal, 2016, 49(10): 95-102, 122. (in Chinese))
|
[20] |
李兆焱, 袁晓铭, 王鸾, 等. 巨厚场地三种土层地震反应分析程序对比检验[J]. 地震工程与工程振动, 2017, 37(4): 42-50.
(LI Zhao-yan, YUAN Xiao-ming, WANG Luan, et al.Verification of three methods for calculating earthquake response of soil layers in deep sites[J]. Earth- quake Engineering and Engineering Dynamics, 2017, 37(4): 42-50. (in Chinese)) |
[21] |
Building Seismic Safety Council of the National Institute of Building Sciences. NEHRP recommended seismic provisions for new buildings and other structures[S]. 2015.
|
[22] |
SEYHAN E, STEWART J P.Semi-empirical nonlinear site amplification from NGA-West2 data and simulations[J]. Earthquake Spectra, 2014, 30(3): 1241-1256.
|
[23] |
ASCE/SEI 7-16 American Society of Civil Engineers. Minimum design loads for buildings and other structuresSCE/SEI 7-16 American Society of Civil Engineers. Minimum design loads for buildings and other structures[S]. 2016.
|
[24] |
GB 18306—2015中国地震动参数区划图[S]. 2015. (GB 18306—2015 Seismic ground motion parameters zonation map of China[S]. 2015. (in Chinese))
|
[25] |
廖振鹏. 工程波动理论导论[M]. 2版. 北京: 科学出版社, 2002.
(LIAO Zhen-peng.Introduction to wave motion theories for engineering[M]. 2nd ed. Beijing: Science Press, 2002. (in Chinese)) |
[26] |
罗诚, 谢俊举, 温增平. 熊本
(LUO Cheng, XIE Jun-ju, WEN Zeng-ping.Comparison of near-field surface and borehole ground motion observed during the Kumamoto |
[1] | GONG Jian-qing, PENG Wen-zhe. Three-dimensional finite element analysis of stress and deformation characteristics of energy piles under inclined loads[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(11): 2105-2111. DOI: 10.11779/CJGE202111017 |
[2] | HAN Lei, YE Guan-lin, WANG Jian-hua, YANG Guang-hui, ZHOU Song. Finite element analysis of impact of under-crossing of large shallow shield tunnel on riverbank[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(zk1): 125-128. DOI: 10.11779/CJGE2015S1025 |
[3] | DU Chuang, DING Hong-yan, ZHANG Pu-yang, LI Jing. Analysis of steel sheet pile cofferdam using finite element method[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(zk2): 159-164. DOI: 10.11779/CJGE2014S2027 |
[4] | CAI Feng, HE Li-jun, ZHOU Xiao-peng, XU Mei-juan, MEI Guo-xiong. Finite element analysis of one-dimensional consolidation of undrained symmetry plane under continuous drainage boundary[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(11): 2141-2147. |
[5] | SUN Hai-zhong. Application of finite element numerical analysis in excavation design[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(suppl): 129-133. |
[6] | HAN Jin-bao, XIONG Ju-hua, SUN Qing, YANG Min. Multi-factor three-dimensional finite element analysis of effects of tunnel construction on adjacent pile foundation[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(sup2): 339-344. |
[7] | XU Wen-qiang, YUAN Fan-fan, WEI Chang-fu, YANG Cao-shuai. Bearing capacity of suction tapered bucket foundations based on three-dimensional finite element numerical analysis[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(zk1): 485-490. |
[8] | HAN Bing, CAO Pinlu. Finite element analysis of interaction between soils and impact sampling bits[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(10): 1560-1563. |
[9] | ZHENG Hong, C. F. Lee, L. G. Tham, Ge Xiurun. Displacement-controlled method in finite element analysis and its applications[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(1): 81-85. |
[10] | Yu Zehong, Zhang Qisen. Finite Element Analysis for Mechanism of Geonets-Soil Interaction[J]. Chinese Journal of Geotechnical Engineering, 1997, 19(3): 79-85. |
1. |
黄飞虎,裴彦飞,苏谦,王鑫,杨鸿麟,李艳东. 螺旋钢桩加固边坡抗滑承载特性研究. 铁道科学与工程学报. 2024(02): 578-590 .
![]() | |
2. |
李绪勇,杨忠平,刘纲,李勇华,张益铭. 隔离式螺旋桩抗压承载与抗地基冻融特性. 岩土工程学报. 2024(06): 1187-1196 .
![]() | |
3. |
车松阳,裴碧莹,徐洪俊. 螺旋桩室内模型试验设计及结果分析. 科技创新与应用. 2024(17): 68-71 .
![]() | |
4. |
周亚龙,王旭,蒋代军,刘德仁,何菲,晏昌,牛富俊. 青藏铁路接触网异型桩基抗冻拔模型试验研究. 西南交通大学学报. 2024(03): 677-684 .
![]() | |
5. |
孙铁成,杨逸,杨茜,董创奇. 开敞系统中冻土-混凝土界面抗拉强度试验研究. 石家庄铁道大学学报(自然科学版). 2024(02): 92-98 .
![]() | |
6. |
郝冬雪,王磊,陈榕,莫凯强,孔纲强,高宇聪. 冻融循环下粉砂中螺旋锚抗拔稳定模型试验研究. 岩土工程学报. 2023(01): 57-65 .
![]() | |
7. |
陈强,李驰,高利平. 基于图像处理技术水分迁移对光伏桩冻拔稳定性影响的试验研究. 太阳能学报. 2023(01): 49-54 .
![]() | |
8. |
田天伦,苏安双,贾青,王淼. 光伏螺旋桩基抗冻拔数值模拟. 水利科学与寒区工程. 2023(03): 1-6 .
![]() | |
9. |
吴炅,陈鹏飞,尹啸笛,郝洪策,梁成军. 桩体结构参数对螺旋桩-土冻胀性能的影响. 河南科学. 2023(07): 964-969 .
![]() | |
10. |
张学礼,崔强,张树林. 冻土地基中锥管板条装配式基础抗拔承载性能试验研究. 地质科技通报. 2022(02): 335-342 .
![]() | |
11. |
熊维林,葛洪林,富海鹰. 考虑非对称冻结的塔杆基础模型实验研究. 铁道科学与工程学报. 2022(04): 931-940 .
![]() | |
12. |
王卫东,崔强,韩杨春,张树林,孟宪乔. 高寒地区输电线路锥管板条装配式基础抗冻拔性能试验研究. 防灾减灾工程学报. 2022(03): 542-552 .
![]() | |
13. |
王超哲,吴进,王立兴,刘浩,杨紫健,吴文兵. 黏弹性地基中螺旋桩水平动力特性. 中南大学学报(自然科学版). 2022(06): 2279-2289 .
![]() | |
14. |
杨朝旭,任刚,殷卫永,韩战涛,任文博,李佳佳. 钢管螺旋桩防护公路膨胀土高边坡工程应用. 公路. 2022(07): 41-48 .
![]() | |
15. |
陈明伟,陈航杰. 桩型对冻土桩基冻胀特性的影响研究. 甘肃科技. 2022(09): 8-12 .
![]() | |
16. |
黄旭斌,盛煜,黄龙,彭尔兴,曹伟,张玺彦,何彬彬. 单向冻结条件下扩底桩抗冻拔能力试验研究. 工程科学与技术. 2021(01): 122-131 .
![]() | |
17. |
屈讼昭,郭咏华,王仪,张斌,张建明,孙清. 大锚片螺旋锚在粉质黏土中的下压承载性能. 土木与环境工程学报(中英文). 2021(05): 34-44 .
![]() | |
18. |
高晓静,孙铁成,李晓康,廖一鸣. 冻结作用下粉土-混凝土接触面抗拉强度试验研究. 冰川冻土. 2020(02): 499-507 .
![]() | |
19. |
黄旭斌,盛煜,黄龙,何彬彬,张玺彦. 季节冻土区扩底单桩受力性能研究进展与展望. 冰川冻土. 2020(04): 1220-1228 .
![]() | |
20. |
王希云,邵康,苏谦,刘凯文,邹婷. 单叶片螺旋钢桩竖向承载特性数值分析. 铁道标准设计. 2019(07): 66-71 .
![]() | |
21. |
王希云. 螺旋钢桩设计参数对抗压承载性能的影响研究. 路基工程. 2019(03): 57-61 .
![]() | |
22. |
邵康,苏谦,刘凯文,李婷,周珩. 竖向受压下考虑安装扰动螺旋钢桩数值模拟分析与现场载荷试验. 岩石力学与工程学报. 2019(12): 2570-2581 .
![]() |