• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LI Rui-shan, YUAN Xiao-ming. Theoretical solution of site amplification coefficient[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(6): 1066-1073. DOI: 10.11779/CJGE201906010
Citation: LI Rui-shan, YUAN Xiao-ming. Theoretical solution of site amplification coefficient[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(6): 1066-1073. DOI: 10.11779/CJGE201906010

Theoretical solution of site amplification coefficient

More Information
  • Received Date: May 03, 2018
  • Published Date: June 24, 2019
  • The site coefficient is a key index for considering the seismic site effects in various national and regional standards, which determines the criterion of earthquake-resistant design, but there exist significant differences between domestic and foreign standards. Based on the ideal soil-bedrock site model, an analytical expression for the quantitative relationship between soil site and reference bedrock is derived and examined through numerical simulation. The general rules of site amplification coefficient are put forward, and the reliability of different recommended values are verified. The results indicate that the soil ground motion is always amplified in the whole frequency domain compared to the reference bedrock. The site amplification coefficients show the overall increasing trend with the softening of the site, and are consistent with the suggested values in the new NEHRP provisions of the United States of America. The coefficient of soft site in China is seriously conservative and the value is less than 1.0 under strong vibration, which is clearly unreasonable. It is debatable whether the site coefficient of class site IV should be generally less than that of class site III in China's code.
  • [1]
    SEED H B, ROMO M P, SUN J I, et al.The Mexico earthquake of September 19, 1985: relationships between soil conditions and earthquake ground motions[J]. Earthquake Spectra, 1988, 4(4): 687-729.
    [2]
    HANKS T C, BRADY A G.The loma prieta earthquake, ground motion, and damage in Oakland, Treasure Island, and San Francisco[J]. Bulletin of the Seismological Society of America, 1991, 81(5): 2019-2047.
    [3]
    GAO S, LIU H, DAVIS P M, et al.Localized amplification of seismic waves and correlation with damage due to the Northridge earthquake: evidence for focusing in Santa Monica[J]. Bulletin of the Seismological Society of America, 1996, 86(1B): S209-S230.
    [4]
    KIM B, HASHASH Y M A. Site response analysis using downhole array recordings during the March 2011 Tohoku-Oki earthquake and the effect of long-duration ground motions[J]. Earthquake Spectra, 2013, 29(S1): S37-S54.
    [5]
    薄景山, 李秀领, 刘德东, 等. 土层结构对反应谱平台值的影响[J]. 地震工程与工程振动, 2003, 23(4): 29-33.
    (BO Jing-shan, LI Xiu-ling, LIU De-dong, et al.Effects of soil layer construction on platform value of response spectra[J]. Earthquake Engineering and Engineering Vibration, 2003, 23(4): 29-33. (in Chinese))
    [6]
    薄景山, 李秀领, 刘红帅. 土层结构对地表加速度峰值的影响[J]. 地震工程与工程振动, 2003, 23(3): 35-40.
    (BO Jing-shan, LI Xiu-ling, LIU Hong-shuai.Effects of soil layer construction on peak accelerations of ground motions[J]. Earthquake Engineering and Engineering Vibration, 2003, 23(3): 35-40. (in Chinese))
    [7]
    DARRAGH R B, SHAKAL A F.The site response of two rock and soil station pairs to strong and weak ground motion[J]. Bulletin of the Seismological Society of America, 1991, 81(5): 1885-1899.
    [8]
    AKI K.Local site effects on weak and strong ground motion[J]. Tectonophysics, 1993, 218(1): 93-111.
    [9]
    KOKUSHO T, SATO K.Surface-to-base amplification evaluated from KiK-net vertical array strong motion records[J]. Soil Dynamics and Earthquake Engineering, 2008, 28(9): 707-716.
    [10]
    郭晓云, 薄景山, 巴文辉. 汶川地震不同场地反应谱平台值统计分析[J]. 地震工程与工程振动, 2012, 32(4): 54-62.
    (GUO Xiao-yun, BO Jin-shan, BA Wen-hui.Statistical analysis of peak flat values of response spectra in different site condition based on Wenchuan strong ground motions[J]. Earthquake Engineering and Engineering Vibration, 2012, 32(4): 54-62. (in Chinese))
    [11]
    崔昊, 丁海平. 基于KiK-net强震记录的场地调整系数估计[J]. 地震工程与工程振动, 2016, 36(4): 147-152.
    (CUI Hao, DING Hai-ping.Estimation of site coefficient based on KiK-net strong-motion seismograph network[J]. Earthquake Engineering and Engineering Dynamics, 2016, 36(4): 147-152. (in Chinese))
    [12]
    HWANG H H M, LIN H, HUO J R. Site coefficients for design of buildings in eastern United States[J]. Soil Dynamics and Earthquake Engineering, 1997, 16(1): 29-40.
    [13]
    李小军, 彭青. 不同类别场地地震动参数的计算分析. 地震工程与工程振动, 2001, 21(1): 29-36.
    (LI Xiao-jun, PENG Qing.Calculation and analysis of earthquake ground motion parameters for different site categories[J]. Earthquake Engineering and Engineering Vibration, 2001, 21(1): 29-36. (in Chinese))
    [14]
    吕悦军, 彭艳菊, 兰景岩, 等. 场地条件对地震动参数影响的关键问题[J]. 震灾防御技术, 2008, 3(2): 126-135.
    (LU Yue-jun, PENG Yan-ju, LAN Jing-yan, et al.Some key problems about site effects on seismic ground motion parameters[J]. Technology for Earthquake Disaster Prevention, 2008, 3(2): 126-135. (in Chinese))
    [15]
    李瑞山. 新一代土层地震反应分析方法研究[D]. 哈尔滨: 中国地震局工程力学研究所, 2016.
    (LI Rui-shan.Research on a new generation technique for ground seismic response analysis[D]. Harbin: Institute of Engineering Mechanics, China Earthquake Administration, 2016. (in Chinese))
    [16]
    KAKLAMANOS J, BAISE L G, THOMPSON E M, et al.Comparison of 1D linear, equivalent-linear, and nonlinear site response models at six KiK-net validation sites[J]. Soil Dynamics and Earthquake Engineering, 2015, 69: 207-219.
    [17]
    王亮. 基于KiK-net强震台网的土层地震动特性研究[D]. 哈尔滨: 中国地震局工程力学研究所, 2014.
    (WANG Liang.The research of soil layer seismic characteristic based on KiK-net strong-motion network[D]. Harbin: Institute of Engineering Mechanics, China Earthquake Administration, 2014. (in Chinese))
    [18]
    GRIFFITHS S C, COX B R, RATHJE E M.Challenges associated with site response analyses for soft soils subjected to high-intensity input ground motions[J]. Soil Dynamics and Earthquake Engineering, 2016, 85: 1-10.
    [19]
    袁晓铭, 李瑞山, 孙锐. 新一代土层地震反应分析方法[J]. 土木工程学报, 2016, 49(10): 95-102, 122.(YUAN Xiao-ming, LI Rui-shan, SUN Rui. A new generation method for earthquake response analysis of soil layers[J]. China Civil Engineering Journal, 2016, 49(10): 95-102, 122. (in Chinese))
    [20]
    李兆焱, 袁晓铭, 王鸾, 等. 巨厚场地三种土层地震反应分析程序对比检验[J]. 地震工程与工程振动, 2017, 37(4): 42-50.
    (LI Zhao-yan, YUAN Xiao-ming, WANG Luan, et al.Verification of three methods for calculating earthquake response of soil layers in deep sites[J]. Earth- quake Engineering and Engineering Dynamics, 2017, 37(4): 42-50. (in Chinese))
    [21]
    Building Seismic Safety Council of the National Institute of Building Sciences. NEHRP recommended seismic provisions for new buildings and other structures[S]. 2015.
    [22]
    SEYHAN E, STEWART J P.Semi-empirical nonlinear site amplification from NGA-West2 data and simulations[J]. Earthquake Spectra, 2014, 30(3): 1241-1256.
    [23]
    ASCE/SEI 7-16 American Society of Civil Engineers. Minimum design loads for buildings and other structuresSCE/SEI 7-16 American Society of Civil Engineers. Minimum design loads for buildings and other structures[S]. 2016.
    [24]
    GB 18306—2015中国地震动参数区划图[S]. 2015. (GB 18306—2015 Seismic ground motion parameters zonation map of China[S]. 2015. (in Chinese))
    [25]
    廖振鹏. 工程波动理论导论[M]. 2版. 北京: 科学出版社, 2002.
    (LIAO Zhen-peng.Introduction to wave motion theories for engineering[M]. 2nd ed. Beijing: Science Press, 2002. (in Chinese))
    [26]
    罗诚, 谢俊举, 温增平. 熊本MW7.0地震近场地表与井下地震动对比研究[J]. 地震学报, 2018, 40(1): 108-120.
    (LUO Cheng, XIE Jun-ju, WEN Zeng-ping.Comparison of near-field surface and borehole ground motion observed during the Kumamoto MW7.0 earthquake[J]. Acta Seismologica Sinica, 2018, 40(1): 108-120. (in Chinese))
  • Related Articles

    [1]GONG Jian-qing, PENG Wen-zhe. Three-dimensional finite element analysis of stress and deformation characteristics of energy piles under inclined loads[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(11): 2105-2111. DOI: 10.11779/CJGE202111017
    [2]HAN Lei, YE Guan-lin, WANG Jian-hua, YANG Guang-hui, ZHOU Song. Finite element analysis of impact of under-crossing of large shallow shield tunnel on riverbank[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(zk1): 125-128. DOI: 10.11779/CJGE2015S1025
    [3]DU Chuang, DING Hong-yan, ZHANG Pu-yang, LI Jing. Analysis of steel sheet pile cofferdam using finite element method[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(zk2): 159-164. DOI: 10.11779/CJGE2014S2027
    [4]CAI Feng, HE Li-jun, ZHOU Xiao-peng, XU Mei-juan, MEI Guo-xiong. Finite element analysis of one-dimensional consolidation of undrained symmetry plane under continuous drainage boundary[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(11): 2141-2147.
    [5]SUN Hai-zhong. Application of finite element numerical analysis in excavation design[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(suppl): 129-133.
    [6]HAN Jin-bao, XIONG Ju-hua, SUN Qing, YANG Min. Multi-factor three-dimensional finite element analysis of effects of tunnel construction on adjacent pile foundation[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(sup2): 339-344.
    [7]XU Wen-qiang, YUAN Fan-fan, WEI Chang-fu, YANG Cao-shuai. Bearing capacity of suction tapered bucket foundations based on three-dimensional finite element numerical analysis[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(zk1): 485-490.
    [8]HAN Bing, CAO Pinlu. Finite element analysis of interaction between soils and impact sampling bits[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(10): 1560-1563.
    [9]ZHENG Hong, C. F. Lee, L. G. Tham, Ge Xiurun. Displacement-controlled method in finite element analysis and its applications[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(1): 81-85.
    [10]Yu Zehong, Zhang Qisen. Finite Element Analysis for Mechanism of Geonets-Soil Interaction[J]. Chinese Journal of Geotechnical Engineering, 1997, 19(3): 79-85.
  • Cited by

    Periodical cited type(22)

    1. 黄飞虎,裴彦飞,苏谦,王鑫,杨鸿麟,李艳东. 螺旋钢桩加固边坡抗滑承载特性研究. 铁道科学与工程学报. 2024(02): 578-590 .
    2. 李绪勇,杨忠平,刘纲,李勇华,张益铭. 隔离式螺旋桩抗压承载与抗地基冻融特性. 岩土工程学报. 2024(06): 1187-1196 . 本站查看
    3. 车松阳,裴碧莹,徐洪俊. 螺旋桩室内模型试验设计及结果分析. 科技创新与应用. 2024(17): 68-71 .
    4. 周亚龙,王旭,蒋代军,刘德仁,何菲,晏昌,牛富俊. 青藏铁路接触网异型桩基抗冻拔模型试验研究. 西南交通大学学报. 2024(03): 677-684 .
    5. 孙铁成,杨逸,杨茜,董创奇. 开敞系统中冻土-混凝土界面抗拉强度试验研究. 石家庄铁道大学学报(自然科学版). 2024(02): 92-98 .
    6. 郝冬雪,王磊,陈榕,莫凯强,孔纲强,高宇聪. 冻融循环下粉砂中螺旋锚抗拔稳定模型试验研究. 岩土工程学报. 2023(01): 57-65 . 本站查看
    7. 陈强,李驰,高利平. 基于图像处理技术水分迁移对光伏桩冻拔稳定性影响的试验研究. 太阳能学报. 2023(01): 49-54 .
    8. 田天伦,苏安双,贾青,王淼. 光伏螺旋桩基抗冻拔数值模拟. 水利科学与寒区工程. 2023(03): 1-6 .
    9. 吴炅,陈鹏飞,尹啸笛,郝洪策,梁成军. 桩体结构参数对螺旋桩-土冻胀性能的影响. 河南科学. 2023(07): 964-969 .
    10. 张学礼,崔强,张树林. 冻土地基中锥管板条装配式基础抗拔承载性能试验研究. 地质科技通报. 2022(02): 335-342 .
    11. 熊维林,葛洪林,富海鹰. 考虑非对称冻结的塔杆基础模型实验研究. 铁道科学与工程学报. 2022(04): 931-940 .
    12. 王卫东,崔强,韩杨春,张树林,孟宪乔. 高寒地区输电线路锥管板条装配式基础抗冻拔性能试验研究. 防灾减灾工程学报. 2022(03): 542-552 .
    13. 王超哲,吴进,王立兴,刘浩,杨紫健,吴文兵. 黏弹性地基中螺旋桩水平动力特性. 中南大学学报(自然科学版). 2022(06): 2279-2289 .
    14. 杨朝旭,任刚,殷卫永,韩战涛,任文博,李佳佳. 钢管螺旋桩防护公路膨胀土高边坡工程应用. 公路. 2022(07): 41-48 .
    15. 陈明伟,陈航杰. 桩型对冻土桩基冻胀特性的影响研究. 甘肃科技. 2022(09): 8-12 .
    16. 黄旭斌,盛煜,黄龙,彭尔兴,曹伟,张玺彦,何彬彬. 单向冻结条件下扩底桩抗冻拔能力试验研究. 工程科学与技术. 2021(01): 122-131 .
    17. 屈讼昭,郭咏华,王仪,张斌,张建明,孙清. 大锚片螺旋锚在粉质黏土中的下压承载性能. 土木与环境工程学报(中英文). 2021(05): 34-44 .
    18. 高晓静,孙铁成,李晓康,廖一鸣. 冻结作用下粉土-混凝土接触面抗拉强度试验研究. 冰川冻土. 2020(02): 499-507 .
    19. 黄旭斌,盛煜,黄龙,何彬彬,张玺彦. 季节冻土区扩底单桩受力性能研究进展与展望. 冰川冻土. 2020(04): 1220-1228 .
    20. 王希云,邵康,苏谦,刘凯文,邹婷. 单叶片螺旋钢桩竖向承载特性数值分析. 铁道标准设计. 2019(07): 66-71 .
    21. 王希云. 螺旋钢桩设计参数对抗压承载性能的影响研究. 路基工程. 2019(03): 57-61 .
    22. 邵康,苏谦,刘凯文,李婷,周珩. 竖向受压下考虑安装扰动螺旋钢桩数值模拟分析与现场载荷试验. 岩石力学与工程学报. 2019(12): 2570-2581 .

    Other cited types(21)

Catalog

    Article views (317) PDF downloads (178) Cited by(43)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return