Loading [MathJax]/jax/output/SVG/jax.js
  • 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
GONG Geng, LI Shenglian, ZHANG Guohua, XIONG Feng, TANG Zhicheng. Numerical experiments on scale effects of contact characteristics of rock joints[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(7): 1481-1490. DOI: 10.11779/CJGE20230673
Citation: GONG Geng, LI Shenglian, ZHANG Guohua, XIONG Feng, TANG Zhicheng. Numerical experiments on scale effects of contact characteristics of rock joints[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(7): 1481-1490. DOI: 10.11779/CJGE20230673

Numerical experiments on scale effects of contact characteristics of rock joints

More Information
  • Received Date: July 14, 2023
  • Available Online: October 22, 2023
  • To investigate the scale effects of contact characteristics in rock joints, a series of numerical models for joint sets with different sizes are generated using the self-affine fractal enlargement method. Subsequently, the normal contact problems are solved using a discrete elastic-plastic normal closure model. The contact characteristics in rock joints are analyzed quantitatively, and the effects of lithology and roughness of rock joints are also investigated. The roughness of the self-affine enlarged rock joints decreases with size. Moreover, there is a close correlation between the contact area ratio and the asperity parameters of the composite topography. The scale effects of the contact area ratio can be attributed to the variation of the combined asperity parameters of the composite topography ηR with size. Additionally, the plastic components of normal closures increase with the joint size. The plastic deformation has weakening effects on the size effects of the contact area ratio, but strengthening effects on the size effects of closure deformation. The hard rock joints have a stronger scale effect of contact characteristics than the soft rock joints, and the representative lengths are also longer. The roughness of the rock joints has a contrary effect on the scale effects of the normal closure deformation and contact area ratio.
  • [1]
    唐志成, 夏才初, 焦玉勇, 等. 岩石工程节理力学[M]. 北京: 科学出版社, 2023.

    TANG Zhicheng, XIA Caichu, JIAO Yuyong, et al. Rock Engineering Joint Mechanics[M]. Beijing: Science Press, 2023. (in Chinese)
    [2]
    李博, 崔逍峰, 莫洋洋, 等. 法向应力作用下砂岩错位裂隙变形行为研究[J]. 岩土力学, 2021, 42(7): 1850-1860. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202107010.htm

    LI Bo, CUI Xiaofeng, MO Yangyang, et al. Deformation behavior of dislocated sandstone fractures subject to normal stresses[J]. Rock and Soil Mechanics, 2021, 42(7): 1850-1860. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202107010.htm
    [3]
    俞缙, 赵晓豹, 赵维炳, 等. 改进的岩石节理弹性非线性法向变形本构模型研究[J]. 岩土工程学报, 2008, 30(9): 1316-1321. doi: 10.3321/j.issn:1000-4548.2008.09.009

    YU Jin, ZHAO Xiao-bao, ZHAO Wei-bing, et al. Improved nonlinear elastic constitutive model for normal deformation of rock fractures[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(9): 1316-1321. (in Chinese) doi: 10.3321/j.issn:1000-4548.2008.09.009
    [4]
    王思维, 李建春. 节理接触面积比对压缩波传播影响的动光弹实验研究[J]. 岩石力学与工程学报, 2021, 40(5): 939-947. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202105008.htm

    WANG Siwei, LI Jianchun. Dynamic photoelastic experimental study on the influence of joint contact area ratio on stress wave propagation[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(5): 939-947. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202105008.htm
    [5]
    LI B, ZHAO Z H, JIANG Y J, et al. Contact mechanism of a rock fracture subjected to normal loading and its impact on fast closure behavior during initial stage of fluid flow experiment[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2015, 39(13): 1431-1449. doi: 10.1002/nag.2365
    [6]
    TANG Z C, ZHANG Z F, ZUO C Q, et al. Peak shear strength criterion for mismatched rock joints: Revisiting JRC-JMC criterion[J]. International Journal of Rock Mechanics and Mining Sciences, 2021, 147: 104894. doi: 10.1016/j.ijrmms.2021.104894
    [7]
    TATONE B S A, GRASSELLI G. An investigation of discontinuity roughness scale dependency using high-resolution surface measurements[J]. Rock Mechanics and Rock Engineering, 2013, 46(4): 657-681. doi: 10.1007/s00603-012-0294-2
    [8]
    GIWELLI A A, SAKAGUCHI K, GUMATI A, et al. Shear behaviour of fractured rock as a function of size and shear displacement[J]. Geomechanics and Geoengineering, 2014, 9(4): 253-264. doi: 10.1080/17486025.2014.884728
    [9]
    FARDIN N, STEPHANSSON O, JING L R. The scale dependence of rock joint surface roughness[J]. International Journal of Rock Mechanics and Mining Sciences, 2001, 38(5): 659-669. doi: 10.1016/S1365-1609(01)00028-4
    [10]
    BAHAADDINI M, HAGAN P C, MITRA R, et al. Scale effect on the shear behaviour of rock joints based on a numerical study[J]. Engineering Geology, 2014, 181: 212-223. doi: 10.1016/j.enggeo.2014.07.018
    [11]
    LI Y Z, CUI Y, GAN Y X, et al. Investigation of the real contact area of tensile fractures with different normal stresses and sizes by using pressure-sensitive films[J]. Engineering Geology, 2023, 314: 107010. doi: 10.1016/j.enggeo.2023.107010
    [12]
    刘丹, 黄曼, 洪陈杰, 等. 基于代表性取样的节理岩体抗压强度尺寸效应试验研究[J]. 岩石力学与工程学报, 2021, 40(4): 766-776. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202104010.htm

    LIU Dan, HUANG Man, HONG Chenjie, et al. Experimental study on size effect of compressive strength of jointed rock mass based on representative sampling[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(4): 766-776. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202104010.htm
    [13]
    RE F, SCAVIA C, ZANINETTI A. Variation in contact areas of rock joint surfaces as a function of scale[J]. International Journal of Rock Mechanics and Mining Sciences, 1997, 34(3/4): 254.e1-254.e12.
    [14]
    BORRI-BRUNETTO M, CARPINTERI A, CHIAIA B. Scaling phenomena due to fractal contact in concrete and rock fractures[M]// BAŽANT Z P, RAJAPAKSE Y D S. Fracture Scaling. Dordrecht: Springer, 1999: 221-238.
    [15]
    MARACHE A, RISS J, GENTIER S. Experimental and modelled mechanical behaviour of a rock fracture under normal stress[J]. Rock Mechanics and Rock Engineering, 2008, 41(6): 869-892. doi: 10.1007/s00603-008-0166-y
    [16]
    BROWN S R, SCHOLZ C H. Closure of rock joints[J]. Journal of Geophysical Research: Solid Earth, 1986, 91(B5): 4939-4948. doi: 10.1029/JB091iB05p04939
    [17]
    KLING T, VOGLER D, PASTEWKA L, et al. Numerical simulations and validation of contact mechanics in a granodiorite fracture[J]. Rock Mechanics and Rock Engineering, 2018, 51(9): 2805-2824. doi: 10.1007/s00603-018-1498-x
    [18]
    SWAN G. Determination of stiffness and other joint properties from roughness measurements[J]. Rock Mechanics and Rock Engineering, 1983, 16(1): 19-38. doi: 10.1007/BF01030216
    [19]
    TANG Z C, WU Z L, ZOU J P. Appraisal of the number of asperity peaks, their radii and heights for three-dimensional rock fracture[J]. International Journal of Rock Mechanics and Mining Sciences, 2022, 153: 105080. doi: 10.1016/j.ijrmms.2022.105080
    [20]
    唐志成, 黄润秋, 焦玉勇, 等. 考虑基体变形和微凸体变形相互作用的岩石节理闭合变形理论模型[J]. 岩土工程学报, 2017, 39(10): 1800-1806. doi: 10.11779/CJGE201710007

    TANG Zhicheng, HUANG Runqiu, JIAO Yuyong, et al. Theoretical closure model for rock joints considering interaction of deformations of substrate deformation and asperity[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(10): 1800-1806. (in Chinese) doi: 10.11779/CJGE201710007
    [21]
    OGILVIE S R, ISAKOV E, GLOVER P W J. Fluid flow through rough fractures in rocks. Ⅱ: a new matching model for rough rock fractures[J]. Earth and Planetary Science Letters, 2006, 241(3/4): 454-465.
    [22]
    TSE R, CRUDEN D M. Estimating joint roughness coefficients[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1979, 16(5): 303-307.
    [23]
    VOGLER D, SETTGAST R R, ANNAVARAPU C, et al. Experiments and simulations of fully hydro-mechanically coupled response of rough fractures exposed to high-pressure fluid injection[J]. Journal of Geophysical Research (Solid Earth), 2018, 123(2): 1186-1200. doi: 10.1002/2017JB015057
    [24]
    OLSON J E. Sublinear scaling of fracture aperture versus length: an exception or the rule?[J]. Journal of Geophysical Research (Solid Earth), 2003, 108(B9): 2413.
    [25]
    POON C Y, BHUSHAN B. Surface roughness analysis of glass-ceramic substrates and finished magnetic disks, and Ni-P coated Al-Mg and glass substrates[J]. Wear, 1995, 190(1): 89-109. doi: 10.1016/0043-1648(95)06764-7
    [26]
    GIWELLI A A, SAKAGUCHI K, MATSUKI K. Experimental study of the effect of fracture size on closure behavior of a tensile fracture under normal stress[J]. International Journal of Rock Mechanics and Mining Sciences, 2009, 46(3): 462-470.
    [27]
    FARDIN N. Influence of structural non-stationarity of surface roughness on morphological characterization and mechanical deformation of rock joints[J]. Rock Mechanics and Rock Engineering, 2008, 41(2): 267-297. doi: 10.1007/s00603-007-0144-9
    [28]
    HOBDAY C, WORTHINGTON M H. Field measurements of normal and shear fracture compliance[J]. Geophysical Prospecting, 2012, 60(3): 488-499.
    [29]
    BARTON N, BANDIS S, BAKHTAR K. Strength, deformation and conductivity coupling of rock joints[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1985, 22(3): 121-140.
    [30]
    YOSHIOKA N. The role of plastic deformation in normal loading and unloading cycles[J]. Journal of Geophysical Research: Solid Earth, 1994, 99(B8): 15561-15568.
  • Related Articles

    [1]SHEN Zhi-fu, SUN Tian-you, BAI Yu-fan, JIANG Ming-jing, ZHOU Feng. Extraction method for micro-structure parameters of clay based on imaging principles of scanning electron microscope[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(5): 933-939. DOI: 10.11779/CJGE202105018
    [2]LIN Zong-ze, TANG Chao-sheng, ZENG Hao, CHENG Qing, TIAN Ben-gang, SHI Bin. Soil evaporation based on infrared thermal imaging technology[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(4): 743-750. DOI: 10.11779/CJGE202104017
    [3]LI Qing-bo, DU Peng-zhao. Automatic RQD analysis method based on information recognition of borehole images[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(11): 2153-2160. DOI: 10.11779/CJGE202011022
    [4]FENG Wen-kai, YI Xiao-yu, GE Hua, WANG Qi, LIU Zhi-gang, ZHANG Guang-xin. In-situ borehole shear tests on cataclastic rock mass of Daguangbao landslide[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(9): 1718-1723. DOI: 10.11779/CJGE201709021
    [5]LIU Zheng-yu, LI Shu-cai, LIU Bin, FAN Ke-rui, NIE Li-chao, ZHANG Xin-xin. 3D cross-hole resistivity inversion imaging of surrounding rock based on distance weighting constraint algorithm[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(4): 652-661. DOI: 10.11779/CJGE201704009
    [6]CAO Yuan, NIU Guan-yi, WANG Tie-liang. In-situ measurement of rock permeability based on pneumatic tests in boreholes[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(3): 534-539. DOI: 10.11779/CJGE201703018
    [7]HAN Zeng-qiang, WANG Chuan-ying, ZHOU Ji-fang, WU Yu-teng, HU Sheng, WANG Jin-chao. Calculation of borehole wall rock integrity based on borehole images and its application in evaluation of grouting effect in fractured rock mass[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(z2): 245-249. DOI: 10.11779/CJGE2016S2040
    [8]ZHOU Shu-chun, DU Kun-qian, XIE Jun. Application of directional circulation drilling and air-lift reverse circulation borehole cleaning[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(sup2): 166-168.
    [9]MA Feng, CHEN Gang, HU Cheng, ZHANG Ming, ZHANG Wei. Change of permeability tensors in fractured rock mass based on intelligent drillhole optical imager[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(3): 496.
    [10]MAO Jizhen, CHEN Qunce, WANG Chenghu. Application of acoustic borehole televiewer to measurement of in-situ stress[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(1): 46-50.
  • Cited by

    Periodical cited type(1)

    1. 宋二祥. 饱和土不排水计算理论与方法探究. 岩土工程学报. 2025(01): 1-29 . 本站查看

    Other cited types(1)

Catalog

    Article views PDF downloads Cited by(2)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return