• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LIN Zong-ze, TANG Chao-sheng, ZENG Hao, CHENG Qing, TIAN Ben-gang, SHI Bin. Soil evaporation based on infrared thermal imaging technology[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(4): 743-750. DOI: 10.11779/CJGE202104017
Citation: LIN Zong-ze, TANG Chao-sheng, ZENG Hao, CHENG Qing, TIAN Ben-gang, SHI Bin. Soil evaporation based on infrared thermal imaging technology[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(4): 743-750. DOI: 10.11779/CJGE202104017

Soil evaporation based on infrared thermal imaging technology

More Information
  • Received Date: August 04, 2020
  • Available Online: December 04, 2022
  • Evaporation is one of the major approaches of interaction between soil and atmosphere. Additionally, it is also an important factor which significantly controls the moisture field of soil and successively affects its engineering characteristics. In this investigation, the infrared thermal imaging technology is used to conduct experimental researches on the soil evaporation process. Three sets of soil samples with different layer thicknesses and initial moisture contents are configured. The samples are dried under the constant temperature and relative humidity conditions while their mass changes are regularly recorded to obtain the evaporation process. The temperature field of the soil surface is simultaneously monitored in real time with an infrared thermal imager. The experimental results show that the evaporation process of soil samples can be divided into three typical stages: the constant rate stage, the falling rate stage and the residual stage. In response, the soil surface temperature also undergoes three typical stages: the constant low temperature stage, the rising temperature stage and the stable stage, which correspond to the three evaporation stages. Based on the law of conservation of energy, a linear relationship between the soil evaporation rate and the temperature difference between the soil surface and the atmosphere is established through theoretical deduction and verified through experimental inspection. This relationship is found to be not affected by the initial layer thickness or moisture content of the soil samples. The research results show that it is feasible to utilize the infrared thermal imaging technology in soil evaporation studies, which provides an original approach for grasping the temporal and spatial evolution characteristics of the surface moisture field under climatic impact in a more rapid way.
  • [1]
    SAITO H, SIMUNEK J, MOHANTY B P. Numerical analysis of coupled water, vapor, and heat transport in the vadose zone[J]. Vadose Zone Journal, 2006, 5(2): 784-800. doi: 10.2136/vzj2006.0007
    [2]
    XUE Z, AKAE T. Maximum surface temperature model to evaluate evaporation from a saline soil in arid area[J]. Paddy and Water Environment, 2012, 10(2): 153-159. doi: 10.1007/s10333-011-0286-y
    [3]
    WILSON G W, FREDLUND D G, BARBOUR S L. Coupled soil-atmosphere modelling for soil evaporation[J]. Canadian Geotechnical Journal, 1994, 31(2): 151-161. doi: 10.1139/t94-021
    [4]
    WILSON G W, FREDLUND D G, BARBOUR S L. The prediction of evaporative fluxes from unsaturated soil surfaces[J]. Unsaturated Soils, 1995: 423-429.
    [5]
    YANG M D, YANFUL E K. Water balance during evaporation and drainage in cover soils under different water table conditions[J]. Advances in Environmental Research, 2002, 6(4): 505-521. doi: 10.1016/S1093-0191(01)00077-6
    [6]
    YANFUL E K, MOUSAVI S M, YANG M. Modeling and measurement of evaporation in moisture-retaining soil covers[J]. Advances in Environmental Research, 2003, 7(4): 783-801. doi: 10.1016/S1093-0191(02)00053-9
    [7]
    CUI Y J, LU Y F, DELAGE P, et al. Field simulation of in situ water content and temperature changes due to ground-atmospheric interactions[J]. Géotechnique, 2005, 55(7): 557-567. doi: 10.1680/geot.2005.55.7.557
    [8]
    CUI Y J, GAO Y B, FERBER V. Simulating the water content and temperature changes in an experimental embankment using meteorological data[J]. Engineering Geology, 2010, 114(3/4): 456-471.
    [9]
    TANG C S, WANG D Y, SHI B, et al. Effect of wetting-drying cycles on profile mechanical behavior of soils with different initial conditions[J]. Catena, 2016, 139: 105-116. doi: 10.1016/j.catena.2015.12.015
    [10]
    滕继东, 单锋, 张升, 等. 考虑风速影响的土表蒸发计算方法[J]. 岩土工程学报, 2018, 40(1): 100-107. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201801012.htm

    TENG Ji-dong, SHAN Feng, ZHANG Sheng, et al. New method for calculating soil surface evaporation considering effect of wind speed[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(1): 100-107. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201801012.htm
    [11]
    陈建斌, 孔令伟, 赵艳林, 等. 非饱和土的蒸发效应与影响因素分析[J]. 岩土力学, 2007, 28(1): 36-40. doi: 10.3969/j.issn.1000-7598.2007.01.007

    CHEN Jian-bin, KONG Ling-wei, ZHAO Yan-lin, et al. Evaporation effect in unsaturated soil and its influential factors[J]. Rock and Soil Mechanics, 2007, 28(1): 36-40. (in Chinese) doi: 10.3969/j.issn.1000-7598.2007.01.007
    [12]
    陈建斌, 孔令伟, 赵艳林, 等. 蒸发蒸腾作用下非饱和土的吸力和变形影响因素分析[J]. 岩土力学, 2007, 28(9): 1767-1772. doi: 10.3969/j.issn.1000-7598.2007.09.001

    CHEN Jian-bin, KONG Ling-wei, ZHAO Yan-lin, et al. On influence factors of suction and deformation of unsaturated soil under evaporation and transpiration effect[J]. Rock and Soil Mechanics, 2007, 28(9): 1767-1772. (in Chinese) doi: 10.3969/j.issn.1000-7598.2007.09.001
    [13]
    SINGH V P, XU C Y. Evaluation and generalization of 13 mass-transfer equations for determining free water evaporation[J]. Hydrological Processes, 1997, 11(3): 311-323. doi: 10.1002/(SICI)1099-1085(19970315)11:3<311::AID-HYP446>3.0.CO;2-Y
    [14]
    KONDO J, SAIGUSA N, SATO T. A parameterization of evaporation from bare soil surfaces[J]. Journal of Applied Meteorology, 1990, 29(5): 385-389. doi: 10.1175/1520-0450(1990)029<0385:APOEFB>2.0.CO;2
    [15]
    KONDO J, SAIGUSA N, SATO T. A model and experimental study of evaporation from bare-soil surfaces[J]. Journal of Applied Meteorology, 1992, 31(3): 304-312. doi: 10.1175/1520-0450(1992)031<0304:AMAESO>2.0.CO;2
    [16]
    BENSON C, ABICHOU T, ALBRIGHT W, et al. Field evaluation of alternative earthen final covers[J]. International Journal of Phytoremediation, 2001, 3(1): 105-127. doi: 10.1080/15226510108500052
    [17]
    宋卫康, 丁文其, 崔玉军. 恒定大气条件下砂土蒸发机制的模型试验研究[J]. 岩石力学与工程学报, 2014, 33(2): 405-412. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201402022.htm

    SONG Wei-kang, DING Wen-qi, CUI Yu-jun. Model test study of evaporation mechanism of sand under constant atmospheric condition[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(2): 405-412. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201402022.htm
    [18]
    TAROZZI L, MUSCIO A, TARTARINI P. Experimental tests of dropwise cooling in infrared-transparent media[J]. Experimental Thermal and Fluid Science, 2007, 31(8): 57-865.
    [19]
    WULSTEN E, LEE G. Surface temperature of acoustically levitated water microdroplets measured using infrared thermography[J]. Chemical Engineering Science, 2008, 63(22): 5420-5424. doi: 10.1016/j.ces.2008.07.020
    [20]
    吴贤, 高祥, 赵奎, 等. 岩石破裂过程中红外温度场瞬时变化异常探究[J]. 岩石力学与工程学报, 2016, 35(8): 1578-1594. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201608006.htm

    WU Xian, GAO Xiang, ZHAO Kui, et al. Abnormality of transient infrared temperature field(ITF) in the process of rock failure[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(8): 1578-1594. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201608006.htm
    [21]
    袁宗征, 刘苗, 王双超, 等. 红外探测技术在大坪山隧道岩溶预报中的应用[J]. 公路, 2015, 5(5): 242-245. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL201505054.htm

    YUAN Zong-zheng, LIU Miao, WANG Shuang-chao, et al. Application of infrared detection technology in Karst prediction of Dapingshan tunnel[J]. Highway, 2015, 5(5): 242-245. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL201505054.htm
    [22]
    李明. 热红外遥感在福建滨海地热调查中的应用研究[J]. 福建地质, 2015, 4: 312-318. https://www.cnki.com.cn/Article/CJFDTOTAL-FJDZ201604008.htm

    LI Ming. Application of thermal infrared remote sensing in coastal geothermal survey of Fujian Province[J]. Geology of Fujian, 2015, 4: 312-318. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-FJDZ201604008.htm
    [23]
    LIU J G, LV M K. The engineering geological properties of Xiashu loess in Nanjing. Investigation[J]. Science Technology, 1996, 6: 36-38.
    [24]
    FABIEN G, MICKAEL A, KHELLIL S. Infrared thermography investigation of an evaporating sessile water droplet on heated substrates[J]. Langmuir, 2010, 26(7): 4576-4580.
    [25]
    TUCKERMANN R, BAUERECKER S, CAMMENGA H K, IR-thermography of evaporating acoustically levitated drops[J]. International Journal of Thermophysics, 2005, 26(2): 1583-1594.
    [26]
    WANG W Z. Wind Tunnel Experiments on Bare Soil Evaporation[D]. Taiwan: National Central University, 2006.
    [27]
    MONTEITH J L, UNSWORTH M H. Principles of Environmental Physics[M]. 2nd ed. London: Edward Arnold, 1990.
    [28]
    AMANO E, SALVUCCI G D. Detection and use of three signatures of soil-limited evaporation[J]. Remote Sensing of Environment, 1999, 67(1): 108-122.
    [29]
    QIU G Y, BEN-ASHER J. Experimental determination of soil evaporation stages with soil surface temperature[J]. Soil Physics, 2010, 74(1): 13-22.
    [30]
    唐朝生, 施斌, 顾凯. 土中水分的蒸发过程试验研究[J]. 工程地质学报, 2011, 19(6): 875-881. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201106011.htm

    TANG Chao-sheng, SHI Bin, GU Kai. Experimental investigation on evaporation process of water in soil during drying[J]. Journal of Engineering Geology, 2011, 19(6): 875-881. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201106011.htm
    [31]
    唐朝生, 施斌. 干湿循环过程中膨胀土的胀缩变形特征[J]. 岩土工程学报, 2011, 33(9): 1376-1384. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201109013.htm

    TANG Chao-sheng, SHI Bin. Swelling and shrinkage behaviour of expansive soil during wetting-drying cycles[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(9): 1376-1384. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201109013.htm
    [32]
    BRONSWIJK J J B. Modeling of water balance, cracking and subsidence of clay soils[J]. Journal of Hydrology, 1988, 97(3/4): 199-212.
    [33]
    PERON H, HUECKEL T, LALOUI L, et al. Fundamentals of desiccation cracking of fine-grained soils: experimental characterization and mechanisms identification[J]. Canadian Geotechnical Journal, 2009, 46(10): 1177-1201.
    [34]
    FREDLUND D G, RAHARDJO H. Soil Mechanics for Unsaturated Soils[M]. New York: Wiley, 1993.
    [35]
    LU N, DONG Y. Correlation between soil-shrinkage curve and water-retention characteristics[J]. Journal of Geotechnical & Geoenvironmental Engineering, 2017, 143(9): 0001741.
    [36]
    LU N, LIKOS W J. Unsaturated Soil Mechanics[M]. New York: J Wiley, 2004.
    [37]
    SCHERER G W. Theory of drying[J]. Journal of the American Ceramic Society, 2010, 73(1): 3-14.
    [38]
    WILSON G W. Soil Evaporative Fluxes for Geotechnical Engineering Problems[D]. Saskatoon: University of Saskatchewan, 1990.
    [39]
    BLIGHT D E. Interactions between the atmosphere and the Earth[J]. Géotechnique, 1997, 47(4): 715-767.
    [40]
    BRUTSAERT W. Evaporation into the Atmosphere: Theory, History, and Applications[M]. Dordrecht: D Reidel Publishing Company, 1988.
    [41]
    JENSEN M E, BURMAN R D, ALLEN, R G. Evapotranspiration and irrigation water requirements[C]//American Society of Civil Engineers. Manuals and Reports on Engineering Practice, 1990, New York: 25-41.
    [42]
    HILLEL D. Introduction to Environmental Soil Physics[M]. Amsterdam: Elsevier Academic Press, 2004.
    [43]
    QIU G Y, BEN-ASHER J, YANO T, et al. Estimation of soil evaporation using the differential temperature method[J]. Soil Science Society of America Journal, 1999, 63(6): 1608-1614.
    [44]
    TANNER C B, FUCHS M. Evaporation from unsaturated surface: a generalize combination method[J]. Journal of Geophysical Research Atmospheres, 1968, 73(4): 1299-1304.
    [45]
    QIU G Y, YANO T, MOMII K. An improved methodology to measure evaporation from bare soil based on comparison of surface temperature with a dry soil[J]. Journal of Hydrology, 1998, 210(1/2/3/4): 93-105.
  • Related Articles

    [1]JIANG Lusha, PU Hefu, MIN Ming, QIU Jinwei, CHEN Xiaoxiong. Sorption properties of polymer-modified bentonite to Pb(Ⅱ) ions[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(S2): 54-59. DOI: 10.11779/CJGE2024S20018
    [2]ZHANG Wen-jie, JIANG Feng-yong. Experimental study on effect of dissolved organic matter on mobility of soil colloids[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(11): 2013-2019. DOI: 10.11779/CJGE202111007
    [3]XU Fei, CAI Yue-bo, QIAN Wen-xun, WEI Hua, ZHUANG Hua-xia. Mechanism of cemented soil modified by aliphatic ionic soil stabilizer[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(9): 1679-1687. DOI: 10.11779/CJGE201909012
    [4]HUANG Wei, LIU Qing-bing, XIANG Wei, ZHANG Yun-long, WANG Zhen-hua, DAO Minh Huan. Water adsorption characteristics and water retention model for montmorillonite modified by ionic soil stabilizer[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(1): 121-130. DOI: 10.11779/CJGE201901013
    [5]HE Shun-hui, XIE Shi-ping, ZHANG Jiang. Adsorption and isolation of GCL on copper ions[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(zk1): 79-82. DOI: 10.11779/CJGE2016S1014
    [6]LIU Qing-bing, XIANG Wei, CUI De-shan. Effect of ionic soil stabilizer on bound water of expansive soils[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(10): 1887-1895.
    [7]LIU Qing-bing, XIANG Wei, CUI De-shan, CAO Li-jing. Mechanism of expansive soil improved by ionic soil stabilizer[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(4): 648.
    [8]Experimental study on reducing thickness of adsorbed water layer for red clay particles treated by ionic soil stabilizer[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(6).
    [9]NING Jianguo, HUANG Xin, XU Sheng. Effect of pH value of soil on strength increasing of the stabilized soil[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(1): 98-102.
    [10]Zhang Huiming, Zeng Qiaoling. Steady state strength of sand:concepts and experiment[J]. Chinese Journal of Geotechnical Engineering, 1999, 21(2): 95-100.
  • Cited by

    Periodical cited type(8)

    1. 陈星,黄涛,彭道平,赵锐,刘运. 赤泥渗滤液对GCL多尺度孔隙结构及防渗性能影响. 安全与环境学报. 2024(01): 290-301 .
    2. 冯斌,徐滨. GCL膨润土衬垫膨胀量对渗透性能的影响. 新型建筑材料. 2024(03): 121-124 .
    3. 李天义,孙德安,傅贤雷,陈征,汪磊,杜延军. 考虑时变污染源与土工膜破损的污染物二维迁移特性. 岩土工程学报. 2024(11): 2450-2456 . 本站查看
    4. 林海,时花豹,周创兵,吕志涛. 黏土-膨润土混合土衬里的渗透特性试验研究. 材料导报. 2024(23): 96-101 .
    5. 刘志彬,王宇婷,罗婷倚,唐亚森,谢世平. GCL用于路基水分场调控可行性及铺设位置优化分析. 重庆交通大学学报(自然科学版). 2023(12): 53-60 .
    6. 王亮,杨华展,吴舒畅,罗昊进,汤泽和,于俊赞,丁昊,朱世俊. 市政污水管道渗漏污染物迁移数学解析模型. 给水排水. 2022(09): 117-123 .
    7. 倪佳琪,詹良通,冯嵩,孔令刚,丰田. 压实钢渣-膨润土覆盖防渗材料试验研究. 浙江大学学报(工学版). 2022(12): 2478-2486 .
    8. 康祺祯,李静静,李育超,姚士元,陈云敏. PAA-Na改性膨润土在酸碱盐溶液中的渗透性. 浙江大学学报(工学版). 2021(10): 1877-1884+1921 .

    Other cited types(1)

Catalog

    Article views (378) PDF downloads (337) Cited by(9)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return