• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LI Qing-bo, DU Peng-zhao. Automatic RQD analysis method based on information recognition of borehole images[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(11): 2153-2160. DOI: 10.11779/CJGE202011022
Citation: LI Qing-bo, DU Peng-zhao. Automatic RQD analysis method based on information recognition of borehole images[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(11): 2153-2160. DOI: 10.11779/CJGE202011022

Automatic RQD analysis method based on information recognition of borehole images

More Information
  • Received Date: June 17, 2020
  • Available Online: December 05, 2022
  • RQD is an important index for evaluating the integrity of rock masses. The traditional methods are greatly affected by drilling process, core quality and run length, and cannot objectively reflect the quality of rock masses. To solve this problem, An automatic RQD analysis method based on the edge threshold segmentation of borehole images is proposed. This method first performs preprocessing and edge threshold segmentation on the borehole images to achieve target screening. Then, encode the screened target area is encoded, and the connected areas are merged to determine the effective targets that affect the RQD analysis. Finally, the location and width of the structural plane and fracture zone are extracted, and the RQD of boreholes is calculated. For a case study of the Dongzhuang Dam at Jinghe River, the automatic RQD analysis is performed, and the achieved results are in good agreement with the borehole images and the coefficient of rock mass integrity. The proposed method improves the accuracy of RQD statistics, enriches the acquisition of RQD, and provides a fast and effective method for evaluating the rock mass integrity.
  • [1]
    DEERE D U. Technical description of rock cores for engineering purposes[J]. Rock Mechanics and Engineering Geology, 1963, 1(1): 18-22.
    [2]
    PALMSTROM A. Measurements of and correlations between blocksize and rock quality designation (RQD)[J]. Tunn Undergr SpaceTechnol, 2005, 20: 362-377. doi: 10.1016/j.tust.2005.01.005
    [3]
    OZTURK C A, NASUF E. Geostatistical assessment of rock zones for tunneling[J]. Tunneling and Underground Space Technology, 2002(17): 275-285.
    [4]
    王国欣, 肖树芳, 陈剑平, 等. 不连续面三维网络在RQD中的应用研究[J]. 岩石力学与工程学报, 2002, 21(12): 1761-1764. doi: 10.3321/j.issn:1000-6915.2002.12.003

    WANG Guo-xin, XIAO Shu-fang, CHEN Jian-ping, et al. Study on application of 3D network of discontinuities to RQD[J]. Chinese Journal of Rock Mechanics and Engineering, 2002, 21(12): 1761-1764. (in Chinese) doi: 10.3321/j.issn:1000-6915.2002.12.003
    [5]
    陈剑平, 王清, 赵红亮, 等. 窗口测线法获取岩体RQD[J]. 岩石力学与工程学报, 2004, 23(9): 1491-1495. doi: 10.3321/j.issn:1000-6915.2004.09.016

    CHEN Jian-ping, WANG Qing, ZHAO Hong-liang, et al. Obtaining RQD of rock mass by sampling window method[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(9): 1491-1495. (in Chinese) doi: 10.3321/j.issn:1000-6915.2004.09.016
    [6]
    徐伟, 胡新丽, 黄磊, 等. 结构面三维网络模拟计算RQD及精度对比研究[J]. 岩石力学与工程学报, 2012, 31(4): 822-833. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201204024.htm

    XU Wei, HU Xin-li, HUANG Lei, et al. Research on RQD of rock mass calculated by three-dimensional discontinuity network simulation method and its accuracy comparison[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(4): 822-833. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201204024.htm
    [7]
    崔小平, 秦趣, 马士彬. 三维激光扫描技术获取岩体RQD值中的应用[J]. 六盘水师范高等专科学校学报, 2011, 23(3): 29-32. doi: 10.3969/j.issn.1671-055X.2011.03.007

    CUI Xiao-ping, QIN Qu, MA Shi-bin. The application of 3d laser scanning technology in rock RQD data[J]. Journal of Liupanshui Teachers College, 2011, 23(3): 29-32. (in Chinese) doi: 10.3969/j.issn.1671-055X.2011.03.007
    [8]
    KAYABASI A, YESILOGLU-GULTEKIN GOKCEOGLU C. Use of non-linear prediction tools to assess rock masspermeability using various discontinuity parameters[J]. Engineering Geology, 2015, 185(5): 1-9.
    [9]
    Azimia , Abdolazim . A New method for improving the RQD determination of rock core in borehole[J]. Rock Mechanics & Rock Engineering, 2016, 49(4): 1559-1566.
    [10]
    胡瀚. 基于数字近景摄影测量的岩体RQD获取[D]. 长春: 吉林大学, 2018.

    HU Han. Rock Mass RQD Acquisition Based on Digital Close-range Photogrammetry[D]. Changchun: Jinlin University, 2018. (in Chinese)
    [11]
    THAPA B B, HUGHETT P, KARASAKI K. Semiautomatic analysis of rock fracture orientations from borehole wall images[J]. Geophysics, 1997, 62(1): 129-137. doi: 10.1190/1.1444112
    [12]
    吴剑, 冯少孔, 李宏阶. 钻孔成像中结构面自动判读技术研究[J]. 岩土力学, 2011, 32(3): 951-957. doi: 10.3969/j.issn.1000-7598.2011.03.051

    WU Jian, FENG Shao-kong, LI Hong-jie. Study of automatically extracting structural plane parameters from borehole images[J]. Rock and Soil Mechanics, 2011, 32(3): 951-957. (in Chinese) doi: 10.3969/j.issn.1000-7598.2011.03.051
    [13]
    曹洋兵, 晏鄂川, 胡德新, 等. 岩体结构面产状测量的钻孔摄像技术及其可靠性[J]. 地球科学(中国地质大学学报), 2014, 39(4): 473-480. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201404010.htm

    CAO Yang-bing, YAN E-chuan, HU De-xin, et al. Calculation methods of rock mass discontinuity orientation measured by borehole camera technology and technology reliability[J]. Journal of China University of Geosciences: Earth Science, 2014, 39(4): 473-480. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201404010.htm
    [14]
    王川婴, 邹先坚, 韩增强, 等. 基于特征函数的钻孔图像结构面识别方法[J]. 岩土力学, 2017, 38(10): 3062-3066. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201710038.htm

    WANG Chuan-ying, ZOU Xian-jian, HAN Zeng-qiang, et al. Recognition of structural planes in borehole image based on characteristic function[J]. Rock and Soil Mechanics, 2017, 38(10): 3062-3066. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201710038.htm
    [15]
    葛云峰, 钟鹏, 唐辉明, 等. 基于钻孔图像的岩体结构面几何信息智能测量[J]. 岩土力学, 2019, 40(11): 4467-4476. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201911038.htm

    Intelligent measurement on geometric information of rock discontinuities based on borehole image[J]. Rock and Soil Mechanics, 2019, 40(11): 4467-4476. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201911038.htm
    [16]
    王川婴, Tim LAW K. 钻孔摄像技术的发展与现状[J]. 岩石力学与工程学报, 2005, 24(19): 3440-3448. doi: 10.3321/j.issn:1000-6915.2005.19.006

    WANG Chuan-ying, Tim LAW K. Review of borehole camera technology[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(19): 3440-3448. (in Chinese) doi: 10.3321/j.issn:1000-6915.2005.19.006
    [17]
    汪进超, 王川婴, 胡胜, 等. 孔壁钻孔图像的结构面参数提取方法研究[J]. 岩土力学, 2017, 38(10): 3074-3080. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201710040.htm

    WANG Jin-chao, WANG Chuan-ying, HU Sheng. A new method for extraction of parameters of structural surface in borehole images[J]. Rock and Soil Mechanics, 2017, 38(10): 3074-3080. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201710040.htm
    [18]
    赵芳, 栾晓明, 孙越. 数字图像几种边缘检测算子检测比较分析[J]. 计算机应用, 2004, 24(9): 28-30. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDHJ200903024.htm

    ZHAO Fang, LUAN Xiao-ming, SUN Yue. Edge detection operators in digital image processing[J]. Computer Application, 2004, 24(9): 28-30. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDHJ200903024.htm
  • Cited by

    Periodical cited type(16)

    1. 李文雅,谢承平,高平. 地质BIM在古贤水利枢纽中的设计与应用. 中国水能及电气化. 2025(01): 64-70 .
    2. 汪进超,韩增强,王益腾,王超,张国华. 基于像素空间信息的孔内低照度图像孔隙结构量化方法研究. 岩石力学与工程学报. 2024(S1): 3175-3186 .
    3. 吴金,吴顺川,王焘,席雅允. 基于深度学习的复杂地层钻孔图像岩体结构面识别方法. 清华大学学报(自然科学版). 2024(07): 1136-1146 .
    4. 冼丁浩. 孔内摄像法在灌注桩钻芯法检测中的应用分析. 工程技术研究. 2024(20): 42-44+168 .
    5. 刘冀昆,王成虎,乾增珍,高桂云,张树辉. 基于超声波钻孔电视的深部岩体体积节理数的计算方法及其工程应用. 工程地质学报. 2024(06): 2098-2109 .
    6. 汪华晨,孙宁,陈鸿杰,许晓逸,徐卫亚. 钻孔数字图像识别在岩体完整性评价中的应用. 工程地质学报. 2024(06): 2085-2097 .
    7. 孙志勇,李小菲,王洋,丁自伟. 基于DIP技术钻孔结构面参数与强度相关性研究. 采矿与岩层控制工程学报. 2023(02): 84-92 .
    8. 张卫中,袁威,康钦容,夏缘帝,李梦玲. 基于综合权重—模糊物元法的岩溶地区隧道围岩质量评价. 黄金科学技术. 2023(03): 487-496 .
    9. 李明超,李明泽,韩帅,张佳文,赵文超. 耦合多源勘察信息的水工岩体完整性智能评价方法. 岩土工程学报. 2023(08): 1674-1683 . 本站查看
    10. 张野,陈金桥,李炎隆. 基于多深度模型的钻孔结构面智能识别与量化分析. 地质科技通报. 2023(06): 31-41 .
    11. 赵兴东,王宏宇,王小兵,王立君. 基于智能自学习模型识别岩芯的RQD标定方法. 矿业研究与开发. 2023(12): 159-165 .
    12. 李长宏,黄永亮,沙鹏,黄曼,马成荣,任番泉,翁寒倩. 基于裂隙网络模拟的岩体RQD测量参数确定. 科技通报. 2022(04): 63-69 .
    13. 张小辉,姜春雨,程小辉. 基于Q系统的岩体质量快速评价优化创新方法及应用. 有色金属(矿山部分). 2022(04): 102-109 .
    14. 沙仙武,吴健辉,陈才贤,李佳建. 基于数字图像处理功能的RQD分级方法的应用. 中国矿山工程. 2022(04): 74-78+83 .
    15. 刘冀昆,王成虎,乾增珍,周昊,谷佳诚. 超声波钻孔成像技术在岩体质量定量评价中的应用. 工程勘察. 2022(12): 6-11+46 .
    16. 王超,王川婴,王益腾,汪进超,陈薇,韩增强. 基于孔壁光学图像的岩石孔隙结构识别与分析方法研究. 岩石力学与工程学报. 2021(09): 1894-1901 .

    Other cited types(16)

Catalog

    Article views (319) PDF downloads (175) Cited by(32)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return