Citation: | ZHOU Rui, BAI Bing, YANG Guangchang. Thermodynamic model of coupled temperature and pressure effects for hydrate-bearing sediments within particle rearrangement theory[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(6): 1226-1235. DOI: 10.11779/CJGE20230246 |
[1] |
INADA N, YAMAMOTO K. Data report: hybrid pressure coring system tool review and summary of recovery result from gas-hydrate related coring in the Nankai Project[J]. Marine and Petroleum Geology, 2015, 66: 323-345. doi: 10.1016/j.marpetgeo.2015.02.023
|
[2] |
MAKOGON Y F. Natural gas hydrates—a promising source of energy[J]. Journal of Natural Gas Science and Engineering, 2010, 2(1): 49-59. doi: 10.1016/j.jngse.2009.12.004
|
[3] |
颜荣涛, 韦昌富, 魏厚振, 等. 水合物形成对含水合物砂土强度影响[J]. 岩土工程学报, 2012, 34(7): 1234-1240. http://cge.nhri.cn/cn/article/id/14631
YAN Rongtao, WEI Changfu, WEI Houzhen, et al. Effect of hydrate formation on mechanical strength of hydrate-bearing sand[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(7): 1234-1240. (in Chinese) http://cge.nhri.cn/cn/article/id/14631
|
[4] |
刘昌岭, 李彦龙, 孙建业, 等. 天然气水合物试采: 从实验模拟到场地实施[J]. 海洋地质与第四纪地质, 2017, 37(5): 12-26. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201805001.htm
LIU Changling, LI Yanlong, SUN Jianye, et al. Gas hydrate production test: from experimental simulation to field practice[J]. Marine Geology & Quaternary Geology, 2017, 37(5): 12-26. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201805001.htm
|
[5] |
王维希, 张春生, 吴颜雄, 等. 联合深海地热开采天然气水合物技术展望[J]. 现代化工, 2021, 41(9): 17-21. https://www.cnki.com.cn/Article/CJFDTOTAL-XDHG202109004.htm
WANG Weixi, ZHANG Chunsheng, WU Yanxiong, et al. Prospects on technology for combining deep-sea geothermal energy with exploitation of natural gas hydrate[J]. Modern Chemical Industry, 2021, 41(9): 17-21. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XDHG202109004.htm
|
[6] |
WU P, LI Y H, LIU W G, SUN X, KONG X J, SONG Y C. Cementation failure behavior of consolidated gas hydrate-bearing sand[J]. Journal of Geophysical Research: Solid Earth, 2020, 125(1): e2019JB018623. doi: 10.1029/2019JB018623
|
[7] |
LUO T T, LI Y H, MADHUSUDHAN B N, et al. Deformation behaviors of hydrate-bearing silty sediment induced by depressurization and thermal recovery[J]. Applied Energy, 2020, 276: 115468. doi: 10.1016/j.apenergy.2020.115468
|
[8] |
MASUI A, MIYAZAKI K, HANEDA H, OGATA Y, AOKI K. Mechanical properties of natural gas hydrate bearing sediments retrieved from eastern Nankai trough[C]//Offshore Technology Conference. Houston, 2008.
|
[9] |
LI Y H, SONG Y C, LIU W G, et al. Analysis of mechanical properties and strength criteria of methane hydrate-bearing sediments[J]. International Journal of Offshore and Polar Engineering, 2012, 22: 290-296.
|
[10] |
SHEN S, SUN X, WANG L, et al. Effect of temperature on the mechanical properties of hydrate-bearing sand under different confining pressures[J]. Energy & Fuels, 2021, 35: 4106-4117.
|
[11] |
HYODO M, NAKATA Y, YOSHIMOTO N, et al. Basic research on the mechanical behavior of methane hydrate-sediments mixture[J]. Soils and Foundations, 2005, 45(1): 75-85.
|
[12] |
WINTERS W J, WAITE W F, MASON D H, et al. Methane gas hydrate effect on sediment acoustic and strength properties[J]. Journal of Petroleum Science and Engineering, 2007, 56(1/2/3): 127-135.
|
[13] |
CHAOUACHI M, FALENTY A, SELL K, et al. Microstructural evolution of gas hydrates in sedimentary matrices observed with synchrotron X-ray computed tomographic microscopy[J]. Geochemistry, Geophysics, Geosystems, 2015, 16(6): 1711-1722. doi: 10.1002/2015GC005811
|
[14] |
TOKUNAGA T. Physicochemical controls on adsorbed water film thickness in unsaturated geological media[J]. Water Resources Research, 2011, 47(8): W08514.
|
[15] |
蒋明镜, 朱方园. 不同温压环境下深海能源土力学特性离散元分析[J]. 岩土工程学报, 2014, 36(10): 1761-1769. doi: 10.11779/CJGE201410001
JIANG Mingjing, ZHU Fangyuan. DEM investigation on mechanical properties of methane hydrate bearing soils under different temperatures and pore-water pressures[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(10): 1761-1769. (in Chinese) doi: 10.11779/CJGE201410001
|
[16] |
颜荣涛, 张炳晖, 杨德欢, 等. 不同温-压条件下含水合物沉积物的损伤本构关系[J]. 岩土力学, 2018, 39(12): 4421-4428. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201812016.htm
YAN Rongtao, ZHANG Binghui, YANG Dehuan, et al. Damage constitutive model for hydrate-bearing sediment under different temperature and pore pressure conditions[J]. Rock and Soil Mechanics, 2018, 39(12): 4421-4428. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201812016.htm
|
[17] |
刘乐乐, 张旭辉, 刘昌岭, 等. 含水合物沉积物三轴剪切试验与损伤统计分析[J]. 力学学报, 2016, 48(3): 720-729. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201603021.htm
LIU Lele, ZHANG Xuhui, LIU Changling, et al. Triaxial shear tests and statistical analyses of damage for methane hydrate-bearing sediments[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(3): 720-729. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201603021.htm
|
[18] |
YAMAGUCHI T, AOKI K, TENMA N, et al. A nonlinear elastic model for triaxial compressive properties of artificial methane-hydrate-bearing sediment samples[J]. Energies, 2012, 5(10): 4057-4075. doi: 10.3390/en5104057
|
[19] |
UCHIDA S, SOGA K, YAMAMOTO K. Critical state soil constitutive model for methane hydrate soil[J]. Journal of Geophysical Research: Solid Earth, 2012, 117: B03209.
|
[20] |
SÁNCHEZ M, GAI X R, SANTAMARINA J C. A constitutive mechanical model for gas hydrate bearing sediments incorporating inelastic mechanisms[J]. Computers and Geotechnics, 2017, 84: 28-46. doi: 10.1016/j.compgeo.2016.11.012
|
[21] |
YANG G C, BAI B, LIU Y, et al. Constitutive modeling for undrained shear behavior of gassy sand considering energy dissipation at the mesoscopic level[J]. Ocean Engineering, 2021, 219: 108307. doi: 10.1016/j.oceaneng.2020.108307
|
[22] |
BAI B, ZHOU R, CAI G Q, et al. Coupled thermo- hydro-mechanical mechanism in view of the soil particle rearrangement of granular thermodynamics[J]. Computers and Geotechnics, 2021, 137: 104272. doi: 10.1016/j.compgeo.2021.104272
|
[23] |
JIANG Y M, LIU M. Granular solid hydrodynamics[J]. Granular Matter, 2009, 11(3): 139-156. doi: 10.1007/s10035-009-0137-3
|
[24] |
TEYMOURI M, SÁNCHEZ M, SANTAMARINA J C. A pseudo-kinetic model to simulate phase changes in gas hydrate bearing sediments[J]. Marine and Petroleum Geology, 2020, 120: 104519. doi: 10.1016/j.marpetgeo.2020.104519
|
[25] |
GUPTA S, HELMIG R, WOHLMUTH B. Non-isothermal, multi-phase, multi-component flows through deformable methane hydrate reservoirs[J]. Computational Geosciences, 2015, 19(5): 1063-1088. doi: 10.1007/s10596-015-9520-9
|
[26] |
YAN R T, WEI C F. Constitutive model for gas hydrate-bearing soils considering hydrate occurrence habits[J]. International Journal of Geomechanics, 2017, 17(8): 04017032. doi: 10.1061/(ASCE)GM.1943-5622.0000914
|
[27] |
SHEN J, CHIU C F, NG C W W, et al. A state-dependent critical state model for methane hydrate-bearing sand[J]. Computers and Geotechnics, 2016, 75: 1-11. doi: 10.1016/j.compgeo.2016.01.013
|
[28] |
DE LA FUENTE M, VAUNAT J, MARÍN-MORENO H. A densification mechanism to model the mechanical effect of methane hydrates in sandy sediments[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2020, 44(6): 782-802. doi: 10.1002/nag.3038
|
[29] |
HYODO M, YONEDA J, YOSHIMOTO N, et al. Mechanical and dissociation properties of methane hydrate-bearing sand in deep seabed[J]. Soils and Foundations, 2013, 53(2): 299-314. doi: 10.1016/j.sandf.2013.02.010
|
[30] |
BEEN K, JEFFERIES M G. A state parameter for sands[J]. Geotechnique, 1985, 35(2): 99-112. doi: 10.1680/geot.1985.35.2.99
|
[31] |
LI X S, DAFALIAS Y F. Dilatancy for cohesionless soils[J]. Géotechnique, 2000, 50(4): 449-460. doi: 10.1680/geot.2000.50.4.449
|
[32] |
HYODO M, LI Y H, YONEDA J, et al. Mechanical behavior of gas-saturated methane hydrate-bearing sediments[J]. Journal of Geophysical Research: Solid Earth, 2013, 118: 5185-5194. doi: 10.1002/2013JB010233
|
[1] | YUAN Si-min, WANG Lu-jun, ZHU Bin, CHEN Yun-min. Volumetric strain analysis model for gas hydrate-bearing sediment considering effects of hydrate dissociation[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(6): 1044-1052. DOI: 10.11779/CJGE202206008 |
[2] | WU Er-lu, ZHU Jun-gao, LU Yang-yang, QIAN Bin. Dilatancy equation for coarse-grained soils incorporating particle breakage energy[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(5): 898-906. DOI: 10.11779/CJGE202205013 |
[3] | LUO Ming-xing, ZHANG Ji-ru, LIU Xiao-xuan. Dilatancy behaviors and equation of calcareous sand considering stress path and particle breakage[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(8): 1453-1462. DOI: 10.11779/CJGE202108010 |
[4] | WU Yang, CUI Jie, LIAO Jing-rong, HYODO Masayuki. Experimental study on mechanical characteristics of gas hydrate-bearing sands containing different fines[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(1): 156-164. DOI: 10.11779/CJGE202101018 |
[5] | GUO Wan-li, ZHU Jun-gao, PENG Wen-ming. Dilatancy equation and generalized plastic constitutive model for coarse-grained soils[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(6): 1103-1110. DOI: 10.11779/CJGE201806016 |
[6] | LIU Fang, KOU Xiao-yong, JIANG Ming-jing, XIONG Ju-hua, WU Xiao-feng. Triaxial shear strength of synthetic hydrate-bearing sediments[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(8): 1565-1572. |
[7] | Nonlinear dilatancy model for coarse-grained soils[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(3). |
[8] | ZHANG Bingyin, JIA Yanan, ZHANG Zongliang. Modified Rowe’s dilatancy law of rockfill and Shen Zhujiang’s double yield surfaces elastoplastic model[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(10): 1443-1448. |
[9] | Zhang Jianmin. Reversible and irreversible dilatancy of sand[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(1): 15-20. |
[10] | Liao Hongjian, Yu Maohong, Masaru Akaishi, Zhu Bohong. Elasto viscoplastic constitutive equation of cohesive soils and its application[J]. Chinese Journal of Geotechnical Engineering, 1998, 20(2): 41-44. |