• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHOU Rui, BAI Bing, YANG Guangchang. Thermodynamic model of coupled temperature and pressure effects for hydrate-bearing sediments within particle rearrangement theory[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(6): 1226-1235. DOI: 10.11779/CJGE20230246
Citation: ZHOU Rui, BAI Bing, YANG Guangchang. Thermodynamic model of coupled temperature and pressure effects for hydrate-bearing sediments within particle rearrangement theory[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(6): 1226-1235. DOI: 10.11779/CJGE20230246

Thermodynamic model of coupled temperature and pressure effects for hydrate-bearing sediments within particle rearrangement theory

More Information
  • Received Date: March 21, 2023
  • Available Online: June 04, 2024
  • The mechanical properties of hydrate-bearing sediments are significantly influenced by changes in temperature and water pressure. Based on the particle rearrangement theory, a thermodynamic model that couples temperature and pressure, incorporating the dilation equation considering the effects of hydrate saturation and introducing the bond degradation parameters caused by shear and volumetric strains, is developed to describe the mechanical behaviors of hydrate-bearing sediments. The numerical simulation results are compared with the laboratory experiments to explore the effects of confining pressure, hydrate saturation and the temperature-pressure coupling coefficient on the mechanical properties of sediments from both macroscopic and microscopic perspectives. Finally, the sensitivity analyses are conducted on the stiffness coefficient and bond degradation parameter. The results indicate that the introduction of a temperature-pressure coupling coefficient in the model effectively describes the relationship between the mechanical properties of sediments and temperature and water pressure during deposition. Decreasing environmental temperature and increasing water pressure enhance the bond strength and stiffness of hydrates at the microscopic level, resulting in the increased peak strength, strain softening and shear dilation at the macroscopic level. Increasing the stiffness coefficient γ enhances the peak strength of sediments by increasing the initial stiffness of sediments. The bond degradation parameter enhances the strain-softening behaviors of sediments by increasing the rate of bond degradation.
  • [1]
    INADA N, YAMAMOTO K. Data report: hybrid pressure coring system tool review and summary of recovery result from gas-hydrate related coring in the Nankai Project[J]. Marine and Petroleum Geology, 2015, 66: 323-345. doi: 10.1016/j.marpetgeo.2015.02.023
    [2]
    MAKOGON Y F. Natural gas hydrates—a promising source of energy[J]. Journal of Natural Gas Science and Engineering, 2010, 2(1): 49-59. doi: 10.1016/j.jngse.2009.12.004
    [3]
    颜荣涛, 韦昌富, 魏厚振, 等. 水合物形成对含水合物砂土强度影响[J]. 岩土工程学报, 2012, 34(7): 1234-1240. http://cge.nhri.cn/cn/article/id/14631

    YAN Rongtao, WEI Changfu, WEI Houzhen, et al. Effect of hydrate formation on mechanical strength of hydrate-bearing sand[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(7): 1234-1240. (in Chinese) http://cge.nhri.cn/cn/article/id/14631
    [4]
    刘昌岭, 李彦龙, 孙建业, 等. 天然气水合物试采: 从实验模拟到场地实施[J]. 海洋地质与第四纪地质, 2017, 37(5): 12-26. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201805001.htm

    LIU Changling, LI Yanlong, SUN Jianye, et al. Gas hydrate production test: from experimental simulation to field practice[J]. Marine Geology & Quaternary Geology, 2017, 37(5): 12-26. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201805001.htm
    [5]
    王维希, 张春生, 吴颜雄, 等. 联合深海地热开采天然气水合物技术展望[J]. 现代化工, 2021, 41(9): 17-21. https://www.cnki.com.cn/Article/CJFDTOTAL-XDHG202109004.htm

    WANG Weixi, ZHANG Chunsheng, WU Yanxiong, et al. Prospects on technology for combining deep-sea geothermal energy with exploitation of natural gas hydrate[J]. Modern Chemical Industry, 2021, 41(9): 17-21. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XDHG202109004.htm
    [6]
    WU P, LI Y H, LIU W G, SUN X, KONG X J, SONG Y C. Cementation failure behavior of consolidated gas hydrate-bearing sand[J]. Journal of Geophysical Research: Solid Earth, 2020, 125(1): e2019JB018623. doi: 10.1029/2019JB018623
    [7]
    LUO T T, LI Y H, MADHUSUDHAN B N, et al. Deformation behaviors of hydrate-bearing silty sediment induced by depressurization and thermal recovery[J]. Applied Energy, 2020, 276: 115468. doi: 10.1016/j.apenergy.2020.115468
    [8]
    MASUI A, MIYAZAKI K, HANEDA H, OGATA Y, AOKI K. Mechanical properties of natural gas hydrate bearing sediments retrieved from eastern Nankai trough[C]//Offshore Technology Conference. Houston, 2008.
    [9]
    LI Y H, SONG Y C, LIU W G, et al. Analysis of mechanical properties and strength criteria of methane hydrate-bearing sediments[J]. International Journal of Offshore and Polar Engineering, 2012, 22: 290-296.
    [10]
    SHEN S, SUN X, WANG L, et al. Effect of temperature on the mechanical properties of hydrate-bearing sand under different confining pressures[J]. Energy & Fuels, 2021, 35: 4106-4117.
    [11]
    HYODO M, NAKATA Y, YOSHIMOTO N, et al. Basic research on the mechanical behavior of methane hydrate-sediments mixture[J]. Soils and Foundations, 2005, 45(1): 75-85.
    [12]
    WINTERS W J, WAITE W F, MASON D H, et al. Methane gas hydrate effect on sediment acoustic and strength properties[J]. Journal of Petroleum Science and Engineering, 2007, 56(1/2/3): 127-135.
    [13]
    CHAOUACHI M, FALENTY A, SELL K, et al. Microstructural evolution of gas hydrates in sedimentary matrices observed with synchrotron X-ray computed tomographic microscopy[J]. Geochemistry, Geophysics, Geosystems, 2015, 16(6): 1711-1722. doi: 10.1002/2015GC005811
    [14]
    TOKUNAGA T. Physicochemical controls on adsorbed water film thickness in unsaturated geological media[J]. Water Resources Research, 2011, 47(8): W08514.
    [15]
    蒋明镜, 朱方园. 不同温压环境下深海能源土力学特性离散元分析[J]. 岩土工程学报, 2014, 36(10): 1761-1769. doi: 10.11779/CJGE201410001

    JIANG Mingjing, ZHU Fangyuan. DEM investigation on mechanical properties of methane hydrate bearing soils under different temperatures and pore-water pressures[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(10): 1761-1769. (in Chinese) doi: 10.11779/CJGE201410001
    [16]
    颜荣涛, 张炳晖, 杨德欢, 等. 不同温-压条件下含水合物沉积物的损伤本构关系[J]. 岩土力学, 2018, 39(12): 4421-4428. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201812016.htm

    YAN Rongtao, ZHANG Binghui, YANG Dehuan, et al. Damage constitutive model for hydrate-bearing sediment under different temperature and pore pressure conditions[J]. Rock and Soil Mechanics, 2018, 39(12): 4421-4428. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201812016.htm
    [17]
    刘乐乐, 张旭辉, 刘昌岭, 等. 含水合物沉积物三轴剪切试验与损伤统计分析[J]. 力学学报, 2016, 48(3): 720-729. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201603021.htm

    LIU Lele, ZHANG Xuhui, LIU Changling, et al. Triaxial shear tests and statistical analyses of damage for methane hydrate-bearing sediments[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(3): 720-729. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201603021.htm
    [18]
    YAMAGUCHI T, AOKI K, TENMA N, et al. A nonlinear elastic model for triaxial compressive properties of artificial methane-hydrate-bearing sediment samples[J]. Energies, 2012, 5(10): 4057-4075. doi: 10.3390/en5104057
    [19]
    UCHIDA S, SOGA K, YAMAMOTO K. Critical state soil constitutive model for methane hydrate soil[J]. Journal of Geophysical Research: Solid Earth, 2012, 117: B03209.
    [20]
    SÁNCHEZ M, GAI X R, SANTAMARINA J C. A constitutive mechanical model for gas hydrate bearing sediments incorporating inelastic mechanisms[J]. Computers and Geotechnics, 2017, 84: 28-46. doi: 10.1016/j.compgeo.2016.11.012
    [21]
    YANG G C, BAI B, LIU Y, et al. Constitutive modeling for undrained shear behavior of gassy sand considering energy dissipation at the mesoscopic level[J]. Ocean Engineering, 2021, 219: 108307. doi: 10.1016/j.oceaneng.2020.108307
    [22]
    BAI B, ZHOU R, CAI G Q, et al. Coupled thermo- hydro-mechanical mechanism in view of the soil particle rearrangement of granular thermodynamics[J]. Computers and Geotechnics, 2021, 137: 104272. doi: 10.1016/j.compgeo.2021.104272
    [23]
    JIANG Y M, LIU M. Granular solid hydrodynamics[J]. Granular Matter, 2009, 11(3): 139-156. doi: 10.1007/s10035-009-0137-3
    [24]
    TEYMOURI M, SÁNCHEZ M, SANTAMARINA J C. A pseudo-kinetic model to simulate phase changes in gas hydrate bearing sediments[J]. Marine and Petroleum Geology, 2020, 120: 104519. doi: 10.1016/j.marpetgeo.2020.104519
    [25]
    GUPTA S, HELMIG R, WOHLMUTH B. Non-isothermal, multi-phase, multi-component flows through deformable methane hydrate reservoirs[J]. Computational Geosciences, 2015, 19(5): 1063-1088. doi: 10.1007/s10596-015-9520-9
    [26]
    YAN R T, WEI C F. Constitutive model for gas hydrate-bearing soils considering hydrate occurrence habits[J]. International Journal of Geomechanics, 2017, 17(8): 04017032. doi: 10.1061/(ASCE)GM.1943-5622.0000914
    [27]
    SHEN J, CHIU C F, NG C W W, et al. A state-dependent critical state model for methane hydrate-bearing sand[J]. Computers and Geotechnics, 2016, 75: 1-11. doi: 10.1016/j.compgeo.2016.01.013
    [28]
    DE LA FUENTE M, VAUNAT J, MARÍN-MORENO H. A densification mechanism to model the mechanical effect of methane hydrates in sandy sediments[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2020, 44(6): 782-802. doi: 10.1002/nag.3038
    [29]
    HYODO M, YONEDA J, YOSHIMOTO N, et al. Mechanical and dissociation properties of methane hydrate-bearing sand in deep seabed[J]. Soils and Foundations, 2013, 53(2): 299-314. doi: 10.1016/j.sandf.2013.02.010
    [30]
    BEEN K, JEFFERIES M G. A state parameter for sands[J]. Geotechnique, 1985, 35(2): 99-112. doi: 10.1680/geot.1985.35.2.99
    [31]
    LI X S, DAFALIAS Y F. Dilatancy for cohesionless soils[J]. Géotechnique, 2000, 50(4): 449-460. doi: 10.1680/geot.2000.50.4.449
    [32]
    HYODO M, LI Y H, YONEDA J, et al. Mechanical behavior of gas-saturated methane hydrate-bearing sediments[J]. Journal of Geophysical Research: Solid Earth, 2013, 118: 5185-5194. doi: 10.1002/2013JB010233
  • Related Articles

    [1]YUAN Si-min, WANG Lu-jun, ZHU Bin, CHEN Yun-min. Volumetric strain analysis model for gas hydrate-bearing sediment considering effects of hydrate dissociation[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(6): 1044-1052. DOI: 10.11779/CJGE202206008
    [2]WU Er-lu, ZHU Jun-gao, LU Yang-yang, QIAN Bin. Dilatancy equation for coarse-grained soils incorporating particle breakage energy[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(5): 898-906. DOI: 10.11779/CJGE202205013
    [3]LUO Ming-xing, ZHANG Ji-ru, LIU Xiao-xuan. Dilatancy behaviors and equation of calcareous sand considering stress path and particle breakage[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(8): 1453-1462. DOI: 10.11779/CJGE202108010
    [4]WU Yang, CUI Jie, LIAO Jing-rong, HYODO Masayuki. Experimental study on mechanical characteristics of gas hydrate-bearing sands containing different fines[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(1): 156-164. DOI: 10.11779/CJGE202101018
    [5]GUO Wan-li, ZHU Jun-gao, PENG Wen-ming. Dilatancy equation and generalized plastic constitutive model for coarse-grained soils[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(6): 1103-1110. DOI: 10.11779/CJGE201806016
    [6]LIU Fang, KOU Xiao-yong, JIANG Ming-jing, XIONG Ju-hua, WU Xiao-feng. Triaxial shear strength of synthetic hydrate-bearing sediments[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(8): 1565-1572.
    [7]Nonlinear dilatancy model for coarse-grained soils[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(3).
    [8]ZHANG Bingyin, JIA Yanan, ZHANG Zongliang. Modified Rowe’s dilatancy law of rockfill and Shen Zhujiang’s double yield surfaces elastoplastic model[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(10): 1443-1448.
    [9]Zhang Jianmin. Reversible and irreversible dilatancy of sand[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(1): 15-20.
    [10]Liao Hongjian, Yu Maohong, Masaru Akaishi, Zhu Bohong. Elasto viscoplastic constitutive equation of cohesive soils and its application[J]. Chinese Journal of Geotechnical Engineering, 1998, 20(2): 41-44.

Catalog

    Article views (226) PDF downloads (50) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return