• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
WU Yang, CUI Jie, LIAO Jing-rong, HYODO Masayuki. Experimental study on mechanical characteristics of gas hydrate-bearing sands containing different fines[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(1): 156-164. DOI: 10.11779/CJGE202101018
Citation: WU Yang, CUI Jie, LIAO Jing-rong, HYODO Masayuki. Experimental study on mechanical characteristics of gas hydrate-bearing sands containing different fines[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(1): 156-164. DOI: 10.11779/CJGE202101018

Experimental study on mechanical characteristics of gas hydrate-bearing sands containing different fines

More Information
  • Received Date: June 16, 2020
  • Available Online: December 04, 2022
  • The skeleton structure of gas hydrate-bearing sediments from ocean gas exploitation is composed of coarse grains and fines. A series of low-temperature and high-pressure triaxial drained shear tests are performed to examine the effects of fines and density on the strength and deformation properties of host sands with and without gas hydrate. The results imply that the shear strength and dilation tendency increase with a rise in fines. The rise in fines alerts hydrate morphology and distribution pattern among sand grains. The cluster of coarse grains and fines bonded by hydrate are formed in samples. The shear behavior of host sands exhibits opposite varying tendency with the increasing fines. Moreover, the stress-dilatancy relationship can be modeled using the equation adopted by the modified Cam-clay model and is dependent on hydrate saturation. At a larger hydrate saturation level, the natural samples own a higher peak friction angle and larger increasing speed with the level of gas hydrate than the gas hydrate-bearing samples synthetized in laboratory. The difference is originated from the nucleation mode and distribution pattern of hydrate mass among sand grains.
  • [1]
    SLOAN E D. Clathrate hydrate measurements: Microscopic, mesoscopic, and macroscopic[J]. Journal of Chemical Thermodynamics, 2003, 35(1): 41-53. doi: 10.1016/S0021-9614(02)00302-6
    [2]
    MASUI A, HANEDA H, OGATA Y, et al. Effects of methane hydrate formation on shear strength of synthetic methane hydrate sediments[C]//The Fifteenth International Offshore and Polar Engineering Conference, 2005, Seoul.
    [3]
    李洋辉, 宋永臣, 于锋, 等. 围压对含水合物沉积物力学特性的影响[J]. 石油勘探与开发, 2011, 38(5): 637-640. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201105020.htm

    LI Yang-hui, SONG Yong-chen, YU Feng, et al. Effect of confining pressure on mechanical behavior of methane hydrate-bearing sediments[J]. Petroleum Exploration and Development, 2011, 38(5): 637-640. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201105020.htm
    [4]
    张旭辉, 王淑云, 李清平, 等. 天然气水合物沉积物力学性质的试验研究[J]. 岩土力学, 2010, 31(10): 3069-3074. doi: 10.3969/j.issn.1000-7598.2010.10.007

    ZHANG Xu-hui, WANG Shu-yun, LI Qing-ping, et al. Experimental study of mechanical properties of gas hydrate deposits[J]. Rock and Soil Mechanics, 2010, 31(10): 3069-3074. (in Chinese). doi: 10.3969/j.issn.1000-7598.2010.10.007
    [5]
    魏厚振, 颜荣涛, 陈盼, 等. 不同水合物含量含二氧化碳水合物砂三轴试验研究[J]. 岩土力学, 2011, 32(增刊2): 198-203. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2011S2032.htm

    WEI Hou-zhen, YAN Rong-tao, CHEN Pan, et al. Deformation and failure behavior of carbon dioxide hydrate-bearing sands with different hydrate contents under triaxial shear tests[J]. Rock and Soil Mechanics, 2011, 32(S2): 198-203. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2011S2032.htm
    [6]
    刘芳, 寇晓勇, 蒋明镜, 等. 含水合物沉积物强度特性的三轴试验研究[J]. 岩土工程学报, 2013, 35(8): 1565-1572. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201308027.htm

    LIU Fang, KOU Xiao-yong, JIANG Ming-jing, et al. Triaxial shear strength of synthetic hydrate-bearing sediments[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(8): 1565-1572. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201308027.htm
    [7]
    颜荣涛, 韦昌富, 魏厚振, 等. 水合物形成对含水合物砂土强度影响[J]. 岩土工程学报, 2012, 34(7): 1234-1240. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201207010.htm

    YAN Rong-tao, WEI Chang-fu, WEI Hou-zhen, et al. Effect of hydrate formation on mechanical strength of hydrate-bearing sand[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(7): 1234-1240. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201207010.htm
    [8]
    HYODO M, YONEDA J, YOSHIMOTO N, et al. Mechanical and dissociation properties of methane hydrate-bearing sand in deep seabed[J]. Soils and Foundations, 2013, 53(2): 299-314. doi: 10.1016/j.sandf.2013.02.010
    [9]
    YONEDA J, MASUI A, KONNO Y, et al. Mechanical properties of hydrate-bearing turbidite reservoir in the first gas production test site of the Eastern Nankai Trough[J]. Marine and Petroleum Geology, 2015, 66: 471-486. doi: 10.1016/j.marpetgeo.2015.02.029
    [10]
    刘乐乐, 张旭辉, 刘昌岭, 等. 含水合物沉积物三轴剪切试验与损伤统计分析[J]. 力学学报, 2016, 48(3): 720-729. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201603021.htm

    LIU Le-le, ZHANG Xu-hui, LIU Chang-ling, et al. Triaxial shear tests and statistical analyses of damage for methane hydrate-bearing sediments[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(3): 720-729. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201603021.htm
    [11]
    WU Y, LI N, HYODO M, et al. Modeling the mechanical response of gas hydrate reservoirs in triaxial stress space[J]. International Journal of Hydrogen Energy, 2019, 44(48): 26698-26710.
    [12]
    颜荣涛, 梁维云, 韦昌富, 等. 考虑赋存模式影响的含水合物沉积物的本构模型研究[J]. 岩土力学, 2017, 38(1): 10-18. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201701003.htm

    YAN Rong-tao, LIANG Wei-yun, WEI Chang-fu, et al. A constitutive model for gas hydrate-bearing sediments considering hydrate occurring habits[J]. Rock and Soil Mechanics, 2017, 38(1): 10-18. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201701003.htm
    [13]
    蒋明镜, 朱方园, 申志福. 试验反压对深海能源土宏观力学特性影响的离散元分析[J]. 岩土工程学报, 2013, 35(2): 219-226. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201302006.htm

    JIANG Ming-jing, ZHU Fang-yuan, SHEN Zhi-fu. Influence of back pressure on macro-mechanical properties of methane hydrate soils by DEM analyses[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(2): 219-226. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201302006.htm
    [14]
    蒋明镜, 朱方园. 不同温压环境下深海能源土力学特性离散元分析[J]. 岩土工程学报, 2014, 36(10): 1761-1769. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201410002.htm

    JIANG Ming-jing, ZHU Fang-yuan. DEM investigation on mechanical properties of methane hydrate bearing soils under different temperatures and pore-water pressures[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(10): 1761-1769. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201410002.htm
    [15]
    LEE M W. Models for Gas Hydrate-Bearing Sediments Inferred from Hydraulic Permeability and Elastic Velocities[R]. Herndon VA: US Geological Survey, 2008: 14.
    [16]
    MINAGAWA H, NISHIKAWA Y, IKEDA I, et al. Characterization of sand sediment by pore size distribution and permeability using proton nuclear magnetic resonance measurement[J]. Journal of Geophysical Research: Solid Earth, 2008, 113, B07210.
    [17]
    SUZUKI K, EBINUMA T, NAIRTA H. Features of methane hydrate-bearing sandy-sediments of the forearc basin along the Nankai Trough: Effect on methane hydrate-accumulating mechanism in turbidite[J]. Journal of Geography (Chigaku Zasshi), 2009, 118(5): 899-912.
    [18]
    土的工程分类标准:GB/ T50145—2007[S]. 2007.

    Standard for Engineering Classification of Soil: GB/ T50145—2007[S]. 2007. (in Chinese)
    [19]
    EGAWA K, NISHIMURA O, IZUMI S, et al. Bulk sediment mineralogy of gas hydrate reservoir at the East Nankai offshore production test site[J]. Marine and Petroleum Geology, 2015, 66: 379-387.
    [20]
    YONEDA J, JIN Y, KATAGIRI J, TENMA N. Strengthening mechanism of cemented hydrate-bearing sand at microscales[J]. Geophysical Research Letters, 2016, 43(14): 7442-7450.
    [21]
    ROSCOE K H, BURLAND J B. On the generalized stress-strain behavior of ‘wet’ clay[M]. HEYMAN J, LECKIE F A, ed. Engineering Plasticity. Cambridge: Cambridge University Press, 1968: 535-609.
    [22]
    WANG L, LI Y H, SHEN S, et al. Mechanical behaviours of gas-hydrate-bearing clayey sediments of the South China Sea[J/OL]. Environmental Geotechnics, 2019: 1-13. doi: 10.1680/jenge.19.00048.
    [23]
    YONEDA J, OSHIMA M, KIDA M, et al. Pressure core based onshore laboratory analysis on mechanical properties of hydrate-bearing sediments recovered during India’s National Gas Hydrate Program Expedition (NGHP) 02[J]. Marine and Petroleum Geology, 2019, 108: 482-501.
    [24]
    MIYAZAKI K, MASUI A, SAKAMOTO Y, et al. Triaxial compressive properties of artificial methane hydrate-bearing sediment[J]. Journal of Geophysical Research: Solid Earth, 2011, 116, B06102.
    [25]
    PRIEST J A, HAYLEY J L. Strength of laboratory synthesized hydrate-bearing sands and their relationship to natural hydrate-bearing sediments[J]. Journal of Geophysical Research: Solid Earth, 2019, 124, B018324.

Catalog

    Article views (333) PDF downloads (208) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return