• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
YUAN Si-min, WANG Lu-jun, ZHU Bin, CHEN Yun-min. Volumetric strain analysis model for gas hydrate-bearing sediment considering effects of hydrate dissociation[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(6): 1044-1052. DOI: 10.11779/CJGE202206008
Citation: YUAN Si-min, WANG Lu-jun, ZHU Bin, CHEN Yun-min. Volumetric strain analysis model for gas hydrate-bearing sediment considering effects of hydrate dissociation[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(6): 1044-1052. DOI: 10.11779/CJGE202206008

Volumetric strain analysis model for gas hydrate-bearing sediment considering effects of hydrate dissociation

More Information
  • Received Date: June 16, 2021
  • Available Online: September 22, 2022
  • In the exploitation of gas hydrate, recovering methane from gas hydrate breaks the phase equilibrium state of hydrate and produces water and gas, which reduces the quality of the solid phase in the gas hydrate-bearing sediment (GHBS). Based on the triaxial tests as well as the mechanical properties of GHBS, the solid skeleton is divided into indecomposable soil skeleton and decomposable solid hydrate. The compression parameters of GHBS varying with hydrate saturation are introduced to establish an analysis model that can describe the coupling effects of stress, hydrate decomposition and variation of volumetric strain of GHBS with time during hydrate dissociation process. The proposed model can describe the effects of depressurization rate, pore pressure reduction and hydrate dissociation rate on deformation of GHBS. The numerical results show that with the increase of the depressurization rate, the volumetric strain rate increases in depressurization stage and the time to reach phase equilibrium decreases. The hydrate dissociation rate that has an obvious effect on the deformation rate of reservoir is different in sediments with different particle sizes. The stable pore pressure affects the final settlement of the reservoir, and reducing it can improve the efficiency of gas hydrate exploitation, however, the larger the reduction of pore pressure, the larger the volumetric strain.
  • [1]
    SLOAN E D. Gas hydrates: review of physical/chemical properties[J]. Energy & Fuels, 1998, 12(2): 191–196.
    [2]
    方圆, 张万益, 曹佳文, 等. 我国能源资源现状与发展趋势[J]. 矿产保护与利用, 2018(4): 34–42, 47. https://www.cnki.com.cn/Article/CJFDTOTAL-KCBH201804009.htm

    FANG Yuan, ZHANG Wan-yi, CAO Jia-wen, et al. Analysis on the current situation and development trend of energy resources in China[J]. Conservation and Utilization of Mineral Resources, 2018(4): 34–42, 47. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KCBH201804009.htm
    [3]
    SLOAN E D Jr. Fundamental principles and applications of natural gas hydrates[J]. Nature, 2003, 426(6964): 353–359. doi: 10.1038/nature02135
    [4]
    WAITE W F, SANTAMARINA J C, CORTES D D, et al. Physical properties of hydrate-bearing sediments[J]. Reviews of Geophysics, 2009, 47(4): RG4003.
    [5]
    HYODO M, YONEDA J, YOSHIMOTO N, et al. Mechanical and dissociation properties of methane hydrate-bearing sand in deep seabed[J]. Soils and Foundations, 2013, 53(2): 299–314. doi: 10.1016/j.sandf.2013.02.010
    [6]
    KAJIYAMA S, WU Y, HYODO M, et al. Experimental investigation on the mechanical properties of methane hydrate-bearing sand formed with rounded particles[J]. Journal of Natural Gas Science and Engineering, 2017, 45: 96–107. doi: 10.1016/j.jngse.2017.05.008
    [7]
    吴杨, 崔杰, 廖静容, 等. 不同细颗粒含量甲烷水合物沉积物三轴剪切试验研究[J]. 岩土工程学报, 2021, 43(1): 156–164. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202101024.htm

    WU Yang, CUI Jie, LIAO Jing-rong, et al. Experimental study on mechanical characteristics of gas hydrate-bearing sands containing different fines[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(1): 156–164. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202101024.htm
    [8]
    WU L Y, GROZIC J L. Laboratory analysis of carbon dioxide hydrate-bearing sands[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2008, 134(4): 547–550. doi: 10.1061/(ASCE)1090-0241(2008)134:4(547)
    [9]
    颜荣涛, 韦昌富, 魏厚振, 等. 水合物形成对含水合物砂土强度影响[J]. 岩土工程学报, 2012, 34(7): 1234–1240. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201207010.htm

    YAN Rong-tao, WEI Chang-fu, WEI Hou-zhen, et al. Effect of hydrate formation on mechanical strength of hydrate-bearing sand[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(7): 1234–1240. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201207010.htm
    [10]
    YUN T S, SANTAMARINA J C, RUPPEL C. Mechanical properties of sand, silt, and clay containing tetrahydrofuran hydrate[J]. Journal of Geophysical Research, 2007, 112: B04106.
    [11]
    张旭辉, 鲁晓兵, 王淑云, 等. 四氢呋喃水合物沉积物静动力学性质试验研究[J]. 岩土力学, 2011, 32(增刊1): 303–308. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2011S1055.htm

    ZHANG Xu-hui, LU Xiao-bing, WANG Shu-yun, et al. Experimental study of static and dynamic properties of tetrahydrofuran hydrate-bearing sediments[J]. Rock and Soil Mechanics, 2011, 32(S1): 303–308. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2011S1055.htm
    [12]
    刘芳, 寇晓勇, 蒋明镜, 等. 含水合物沉积物强度特性的三轴试验研究[J]. 岩土工程学报, 2013, 35(8): 1565–1572. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201308027.htm

    LIU Fang, KOU Xiao-yong, JIANG Ming-jing, et al. Triaxial shear strength of synthetic hydrate-bearing sediments[J]. Chinese Journal of Geotechnical Engineering 2013, 35(8): 1565–1572. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201308027.htm
    [13]
    HYODO M, LI Y H, YONEDA J, et al. Effects of dissociation on the shear strength and deformation behavior of methane hydrate-bearing sediments[J]. Marine and Petroleum Geology, 2014, 51: 52–62. doi: 10.1016/j.marpetgeo.2013.11.015
    [14]
    LI D L, WU Q, WANG Z, et al. Tri-axial shear tests on hydrate-bearing sediments during hydrate dissociation with depressurization[J]. Energies, 2018, 11(7): 1819. doi: 10.3390/en11071819
    [15]
    CHOI J H, LIN J S, DAI S, et al. Triaxial compression of hydrate-bearing sediments undergoing hydrate dissociation by depressurization[J]. Geomechanics for Energy and the Environment, 2020, 23: 100187. doi: 10.1016/j.gete.2020.100187
    [16]
    MIYAZAKI K, MASUI A, SAKAMOTO Y, et al. Triaxial compressive properties of artificial methane-hydrate-bearing sediment[J]. Journal of Geophysical Research, 2011, 116: B06102.
    [17]
    MIYAZAKI K, TENMA N, AOKI K, et al. A nonlinear elastic model for triaxial compressive properties of artificial methane-hydrate-bearing sediment samples[J]. Energies, 2012, 5: 4057–4075. doi: 10.3390/en5104057
    [18]
    UCHIDA S, SOGA K, YAMAMOTA K. Critical state soil constitutive model for methane hydrate soil[J]. Journal of Geophysical Research, 2012, 117(B3): B03209.
    [19]
    SULTAN N, GARZIGLIA S. Geomechanical constitutive modeling of gas-hydrate-bearing sediments[C]//Proceedings of the 7th International Conference on Gas Hydrates. 2011. Edinburgh.
    [20]
    蒋明镜, 刘俊, 周卫, 等. 一个深海能源土弹塑性本构模型[J]. 岩土力学, 2018, 39(4): 1153–1158. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201804001.htm

    JIANG Ming-jing, LIU Jun, ZHOU Wei, et al. An elasto-plastic constitutive model for methane hydrate bearing sediments[J]. Rock and Soil Mechanics, 2018, 39(4): 1153–1158. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201804001.htm
    [21]
    蒋明镜, 陈意茹, 卢国文. 一种实用型深海能源土多场耦合离散元数值方法[J]. 岩土工程学报, 2021, 43(8): 1391–1398. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202108004.htm

    JIANG Ming-jing, CHEN Yi-ru, LU Guo-wen. A practical multi-field coupling distinct element method for methane hydrate bearing sediments[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(8): 1391–1398. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202108004.htm
    [22]
    韦昌富, 颜荣涛, 田慧会, 等. 天然气水合物开采的土力学问题: 现状与挑战[J]. 天然气工业, 2020, 40(8): 116–132. doi: 10.3787/j.issn.1000-0976.2020.08.009

    WEI Chang-fu, YAN Rong-tao, TIAN Hui-hui, et al. Geotechnical problems in exploitation of natural gas hydrate: status and challenges[J]. Natural Gas Industry, 2020, 40(8): 116–132. (in Chinese) doi: 10.3787/j.issn.1000-0976.2020.08.009
    [23]
    陈云敏. 环境土工基本理论及工程应用[J]. 岩土工程学报, 2014, 36(1): 1–46. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201401003.htm

    CHEN Yun-min. A fundamental theory of environmental geotechnics and its application[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(1): 1–46. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201401003.htm
    [24]
    CHEN Y M, KE H, FREDLUND D G, et al. Secondary compression of municipal solid wastes and a compression model for predicting settlement of municipal solid waste landfills[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2010, 136(5): 706–717. doi: 10.1061/(ASCE)GT.1943-5606.0000273
    [25]
    柯翰, 郭城, 陈云敏, 等. 考虑降解效应的城市固体废弃物非线性本构模型[J]. 岩土力学, 2014, 35(5): 1217–1223. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201405001.htm

    KE Han, GUO Cheng, CHEN Yun-min, et al. A nonlinear constitutive model for municipal solid waste considering effects of degradation[J]. Rock and Soil Mechanics, 2014, 35(5): 1217–1223. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201405001.htm
    [26]
    LEE J Y, SANTAMARINA J C, RUPPEL C. Volume change associated with formation and dissociation of hydrate in sediment[J]. Geochemistry Geophysics Geosystems, 2010, 11(3): Q03007.
    [27]
    李振赫. 天然气水合物降压开采中沉积物变形响应试验研究[D]. 天津: 天津大学, 2018.

    LI Zhen-he. Experimental Study on Sediment Deformation During Natural Gas Hydrate Dissociation by Depressurization[D]. Tianjin: Tianjin University, 2018. (in Chinese)
    [28]
    张郁, 蔡晶, 李小森, 等. 南海沉积物中甲烷水合物定压分解特性[J]. 中国科学: 物理学力学天文学, 2019, 49(3): 136–143. https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK201903010.htm

    ZHANG Yu, CAI Jing, LI Xiao-sen, et al. Dissociation behaviors of methane hydrate in marine sediments from South China Sea under constant pressure[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2019, 49(3): 136–143. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK201903010.htm
    [29]
    文龙, 周雪冰, 梁德青. 甲烷水合物在天然砂中的分解动力学研究[J]. 石油化工, 2019, 48(9): 926–931. https://www.cnki.com.cn/Article/CJFDTOTAL-SYHG201909009.htm

    WEN Long, ZHOU Xue-bing, LIANG De-qing. Investigation on decomposition kinetics of methane hydrate in natural sand[J]. Petrochemical Technology, 2019, 48(9): 926–931. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SYHG201909009.htm
    [30]
    蒋明镜, 贺洁, 申志福. 甲烷水合物三维离散元模拟参数反演初探[J]. 岩土工程学报, 2014, 35(4): 736–744. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201404024.htm

    JIANG Ming-jing, HE Jie, SHEN Zhi-fu. Preliminary investigation on parameter inversion for three-dimensional distinct element modeling of methane hydrate[J]. Chinese Journal of Geotechnical Engineering, 2014, 35(4): 736–744. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201404024.htm
    [31]
    WANG Y, FENG J C, LI X S, et al. Evaluation of gas production from marine hydrate deposits at the GMGS2-site 8, Pearl River mouth basin, South China Sea[J]. Energies, 2016, 9: 222. doi: 10.3390/en9030222
    [32]
    WU Y, HYODO M, CUI J. On the critical state characteristics of methane hydrate-bearing sediments[J]. Marine and Petroleum Geology, 2020, 116: 104342. doi: 10.1016/j.marpetgeo.2020.104342
    [33]
    李洋辉. 天然气水合物沉积物强度及变形特性研究[D]. 大连: 大连理工大学, 2013.

    LI Yang-hui. Study on Strength and Deformation Behaviors of Methane Hydrate-Bearing Sediments[D]. Dalian: Dalian University of Technology, 2013. (in Chinese)
  • Cited by

    Periodical cited type(2)

    1. 刘姝,李文杰,李莉佳,罗永江,陶瑞,李晓璇,杨亚会. 天然气水合物开采方法研究现状及展望. 钻探工程. 2024(05): 12-23 .
    2. 于倩男,唐慧敏,李承龙,梁爽,梁家修,陈志静,张琨. 天然气水合物注热分解渗流特征及数值模拟. 东北石油大学学报. 2023(06): 38-54+127-128 .

    Other cited types(0)

Catalog

    Article views (174) PDF downloads (123) Cited by(2)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return