• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
GAO Feng, ZHANG Junhui, ZHANG Sheng, ZHENG Jianlong, SHENG Daichao. Experimental study on migration and deposition of particles under alternating dynamic and static loads[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(5): 1057-1066. DOI: 10.11779/CJGE20230168
Citation: GAO Feng, ZHANG Junhui, ZHANG Sheng, ZHENG Jianlong, SHENG Daichao. Experimental study on migration and deposition of particles under alternating dynamic and static loads[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(5): 1057-1066. DOI: 10.11779/CJGE20230168

Experimental study on migration and deposition of particles under alternating dynamic and static loads

More Information
  • Received Date: February 25, 2023
  • Available Online: June 01, 2023
  • The study on the migration and deposition of suspended particles in subgrade is important to reveal the generation and disaster-causing mechanism of mud pumping. The effects of magnitude of dynamic loads, intermittent duration of static loads and repetition number of alternating dynamic and static loads on the migration and deposition of particles are studied by carrying out the mud pumping tests on the layered gravel-sandy silt column. According to the hydrodynamic response characteristics of specimens, the driving mechanism of particle migration is analyzed. The test results show that the suspended particles migrate upward under hydrodynamic force and settle under gravity during the interval of static loads, which results in the fluctuating growth of slurry turbidity in the gravel layer. The particle suspension increment tends to decrease with the increasing repetition of alternating dynamic and static loads, and these particles gradually clog gravel pores and inhibit mud pumping to a certain extent. Increasing the dynamic frequency and stress can further reduce the internal stability of the sandy silt surface layer. However, compared with increasing the dynamic stress, increasing the loading frequency is more beneficial to increase the particle migration mass and vertical migration distance.
  • [1]
    中华人民共和国交通运输部. 李小鹏出席国新办"权威部门话开局"新闻发布会, 强调: 奋力加快建设交通强国努力当好中国现代化的开路先锋[EB/OL]. 2023-02-24. https://www.mot.gov.cn/jiaotongyaowen/202302/t20230224_3763233.html.

    Ministry of Transport of the People's Republic of China. Li Xiaopeng attended the press conference of the "authority department speech opening" of the state information office and stressed: strive to speed up the construction of transportation power and strive to be the pioneer of china's modernization. [EB/OL]. 2023-02-24. https://www.mot.gov.cn/jiaotongyaowen/202302/t20230224_3763233.html. ) (in Chinese)
    [2]
    张军辉, 彭俊辉, 郑健龙. 路基土动态回弹模量预估进展与展望[J]. 中国公路学报, 2020, 33(1): 1-13. doi: 10.3969/j.issn.1001-7372.2020.01.001

    ZHANG Junhui, PENG Junhui, ZHENG Jianlong. Progress and prospect of the prediction model of the resilient modulus of subgrade soils[J]. China Journal of Highway and Transport, 2020, 33(1): 1-13. (in Chinese) doi: 10.3969/j.issn.1001-7372.2020.01.001
    [3]
    彭惠, 马巍, 穆彦虎, 等. 青藏公路普通填土路基长期变形特征与路基病害调查分析[J]. 岩土力学, 2015, 36(7): 2049-2056. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201507037.htm

    PENG Hui, MA Wei, MU Yanhu, et al. Analysis of disease investigation and long-term deformation characteristics of common fill embankment of the Qinghai-Tibet Highway[J]. Rock and Soil Mechanics, 2015, 36(7): 2049-2056. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201507037.htm
    [4]
    NGUYEN T T, INDRARATNA B, KELLY R. Mud pumping under railtracks: mechanisms, assessments and solutions[J]. Australian Geomechanics, 2019, 54(4): 59-80.
    [5]
    杨新安, 高艳灵. 沪宁铁路翻浆冒泥病害的地质雷达检测[J]. 岩石力学与工程学报, 2004, 23(1): 116-119. doi: 10.3321/j.issn:1000-6915.2004.01.022

    YANG Xinan, GAO Yanling. GPR inspection for Shanghai-nanjing railway trackbed[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(1): 116-119. (in Chinese) doi: 10.3321/j.issn:1000-6915.2004.01.022
    [6]
    MNEINA A, SHALABY A. Relating gradation parameters to mechanical and drainage performance of unbound granular materials[J]. Transportation Geotechnics, 2020, 23(6): 100315. http://www.xueshufan.com/publication/2999576606
    [7]
    边学成, 李书豪, 万章博, 等. 路基注浆对高速铁路轨道-路基体系动力特性的影响[J]. 振动与冲击, 2022, 41(4): 294-302. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202204038.htm

    BIAN Xuecheng, LI Shuhao, WAN Zhangbo, et al. Influence of injection remediation on dynamic behaviors of a high-speed railway track-subgrade system[J]. Journal of Vibration and Shock, 2022, 41(4): 294-302. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202204038.htm
    [8]
    KERMANI B, XIAO M, STOFFELS S M, et al. Reduction of subgrade fines migration into subbase of flexible pavement using geotextile[J]. Geotextiles and Geomembranes, 2018, 46(4): 377-383. doi: 10.1016/j.geotexmem.2018.03.006
    [9]
    INDRARATNA B, BABAR SAJJAD M, NGO T, et al. Improved performance of ballasted tracks at transition zones: a review of experimental and modelling approaches[J]. Transportation Geotechnics, 2019, 21: 100260. doi: 10.1016/j.trgeo.2019.100260
    [10]
    HAYASHI S, SHAHU J T. Mud pumping problem in tunnels on erosive soil deposits[J]. Géotechnique, 2000, 50(4): 393-408. doi: 10.1680/geot.2000.50.4.393
    [11]
    BEDRIKOVETSKY P, CARUSO N. Analytical model for fines migration during water injection[J]. Transport in Porous Media, 2014, 101(2): 161-189. doi: 10.1007/s11242-013-0238-7
    [12]
    WANK J R, GEORGE S M, WEIMER A W. Vibro-fluidization of fine boron nitride powder at low pressure[J]. Powder Technology, 2001, 121(2/3): 195-204.
    [13]
    MAWATARI Y, KOIDE T, TATEMOTO Y, et al. Effect of particle diameter on fluidization under vibration[J]. Powder Technology, 2002, 123(1): 69-74. doi: 10.1016/S0032-5910(01)00432-6
    [14]
    周健, 杨永香, 刘洋, 等. 循环荷载下砂土液化特性颗粒流数值模拟[J]. 岩土力学, 2009, 30(4): 1083-1088. doi: 10.3969/j.issn.1000-7598.2009.04.039

    ZHOU Jian, YANG Yongxiang, LIU Yang, et al. Numerical modeling of sand liquefaction behavior under cyclic loading[J]. Rock and Soil Mechanics, 2009, 30(4): 1083-1088. (in Chinese) doi: 10.3969/j.issn.1000-7598.2009.04.039
    [15]
    ZHOU L F, WANG J W, GE W, et al. Quantifying growth and breakage of agglomerates in fluid-particle flow using discrete particle method[J]. Chinese Journal of Chemical Engineering, 2018, 26(5): 914-921. doi: 10.1016/j.cjche.2017.05.018
    [16]
    ZHOU K, HOU J, SUN Q C, et al. A study on particle suspension flow and permeability impairment in porous media using LBM-DEM-IMB simulation method[J]. Transport in Porous Media, 2018, 124(3): 681-698. doi: 10.1007/s11242-018-1089-z
    [17]
    ALOBAIDI I, HOARE D. Factors affecting the pumping of fines at the subgrade subbase interface of highway pavements: a laboratory study[J]. Geosynthetics International, 1994, 1(2): 221-259. doi: 10.1680/gein.1.0010
    [18]
    KERMANI B, XIAO M, STOFFELS S M, et al. Measuring the migration of subgrade fine particles into subbase using scaled accelerated flexible pavement testing–a laboratory study[J]. Road Materials and Pavement Design, 2019, 20(1): 36-57. doi: 10.1080/14680629.2017.1374995
    [19]
    蔡袁强, 严舒豪, 曹志刚, 等. 交通荷载下粉质黏土路基翻浆冒泥机理试验[J]. 吉林大学学报(工学版), 2021, 51(5): 1742-1748. https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY202105022.htm

    CAI Yuanqiang, YAN Shuhao, CAO Zhigang, et al. Experiments to investigate mechanism of mud pumping of road base on silty clay soil under cyclic loading[J]. Journal of Jilin University (Engineering and Technology Edition), 2021, 51(5): 1742-1748. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY202105022.htm
    [20]
    韩博文, 蔡国庆, 李舰, 等. 有砟轨道路基翻浆冒泥模型试验系统的研发与应用[J]. 岩土工程学报, 2022, 44(8): 1406-1415. doi: 10.11779/CJGE202208005

    HAN Bowen, CAI Guoqing, LI Jian, et al. Development and application of model test system for mud pumping in ballasted track subgrade[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(8): 1406-1415. (in Chinese) doi: 10.11779/CJGE202208005
    [21]
    白冰, 张鹏远, 宋晓明, 等. 渗透作用下多孔介质中悬浮颗粒的迁移过程研究[J]. 岩土工程学报, 2015, 37(10): 1786-1793. doi: 10.11779/CJGE201510006

    BAI Bing, ZHANG Pengyuan, SONG Xiaoming, et al. Transport processes of suspended particles in saturated porous media by column seepage tests[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(10): 1786-1793. (in Chinese) doi: 10.11779/CJGE201510006
    [22]
    张升, 高峰, 陈琪磊, 等. 砂-粉土混合料在列车荷载作用下细颗粒迁移机制试验[J]. 岩土力学, 2020, 41(5): 1591-1598. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202005016.htm

    ZHANG Sheng, GAO Feng, CHEN Qilei, et al. Experimental study of fine particles migration mechanism of sand-silt mixtures under train load[J]. Rock and Soil Mechanics, 2020, 41(5): 1591-1598. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202005016.htm
    [23]
    ZHANG S, GAO F, HE X Z, et al. Experimental study of particle migration under cyclic loading: effects of load frequency and load magnitude[J]. Acta Geotechnica, 2021, 16(2): 367-380. doi: 10.1007/s11440-020-01137-x
    [24]
    GAO F, HE X Z, ZHANG S. Pumping effect of rainfall-induced excess pore pressure on particle migration[J]. Transportation Geotechnics, 2021, 31: 100669. doi: 10.1016/j.trgeo.2021.100669
    [25]
    GAO F, ZHANG S, HE X Z, et al. Experimental study on migration behavior of sandy silt under cyclic load[J]. ASCE-Journal of Geotechnical and Geoenvironmental Engineering, 2022, 148(5): 06022003. doi: 10.1061/(ASCE)GT.1943-5606.0002796
    [26]
    Standard Test Methods for Particle-Size Distribution (Gradation) of Soils Using Sieve Analysis: ASTM D6913/D6913M-17[S]. 2017.
    [27]
    TASALLOTI A, MARSHALL A M, HERON C M, et al. Geocellular railway drainage systems: physical and numerical modelling[J]. Transportation Geotechnics, 2020, 22: 100299. doi: 10.1016/j.trgeo.2019.100299
    [28]
    SHENG D, ZHANG S, NIU F, et al. A potential new frost heave mechanism in high-speed railway embankments[J]. Géotechnique, 2014, 64(2): 144-154. doi: 10.1680/geot.13.P.042
    [29]
    BIAN X C, LI W, HU J, et al. Geodynamics of high-speed railway[J]. Transportation Geotechnics, 2018, 17: 69-76. doi: 10.1016/j.trgeo.2018.09.007
    [30]
    LAWRENCE M, BULLOCK R, LIU Z M. China's High-Speed Rail Development[M]. Washington D C: World Bank, 2019.
    [31]
    TERZAGHI K V. The Shearing resistance of saturated soils and the angle between the planes of shear[C]//Proceedings of the 1th International Conference on Soil Mechanics and Foundation Engineering, Cambridge, 1936: 54-56.
    [32]
    MCDOUGAL W G, TSAI Y T, LIU P L F, et al. Wave-induced pore water pressure accumulation in marine soils[J]. Journal of Offshore Mechanics and Arctic Engineering, 1989, 111(1): 1-11. doi: 10.1115/1.3257133
    [33]
    BRAY J D, SANCIO R B. Assessment of the liquefaction susceptibility of fine-grained soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132(9): 1165-1177. doi: 10.1061/(ASCE)1090-0241(2006)132:9(1165)
    [34]
    LI J E, ZHANG J H, ZHANG A S, et al. Evaluation on deformation behavior of granular base material during repeated load triaxial testing by discrete-element method[J]. International Journal of Geomechanics, 2022, 22(11): 1-11.
    [35]
    WINTERWERP J C, DE BOER G J, GREEUW G, et al. Mud-induced wave damping and wave-induced liquefaction[J]. Coastal Engineering, 2012, 64: 102-112. doi: 10.1016/j.coastaleng.2012.01.005
  • Cited by

    Periodical cited type(1)

    1. 宋二祥. 饱和土不排水计算理论与方法探究. 岩土工程学报. 2025(01): 1-29 . 本站查看

    Other cited types(1)

Catalog

    Article views (438) PDF downloads (130) Cited by(2)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return