Citation: | HUANG Ming-hua, HU Ke-xin, ZHAO Ming-hua. Dissipation characteristics of excess pore-water pressure around tunnels in viscoelastic foundation using a fractional-derivative model[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(8): 1446-1455. DOI: 10.11779/CJGE202008009 |
[1] |
YI X, ROWE, R K, LEE K M. Observed and calculated pore pressures and deformations induced by an earth balance shield[J]. Canadian Geotechnical Journal, 1993, 30(3): 476-490. doi: 10.1139/t93-041
|
[2] |
SHIRLAW J N. Observed and calculated pore pressures and deformations induced by an earth balance shield: discussion[J]. Canadian Geotechnical Journal, 1995, 32(1): 181-189. doi: 10.1139/t95-017
|
[3] |
童磊. 软土浅埋隧道变形、渗流及固结性状研究[D]. 杭州: 浙江大学, 2010.
TONG Lei. Studies on Land Subsidence, Seepage Field and Consolidation Behavior of Soft Soil Around a Shallow Circular Tunnel[D]. Hangzhou: Zhejiang University, 2010. (in Chinese)
|
[4] |
CATER J P, SMALL J C, BOOKER J R. A theory of finite elastic consolidation[J]. International Journal of Solids and Structures, 1977, 13(5): 467-478. doi: 10.1016/0020-7683(77)90041-5
|
[5] |
CATER J P, BOOKER J R. Elastic consolidation around a deep circular tunnel[J]. International Journal of Solids and Structures, 1982, 18(12): 1059-1074. doi: 10.1016/0020-7683(82)90093-2
|
[6] |
LI X. Stress and displacement field around a deep circular tunnel with partial sealing[J]. Computers and Geotechnics, 1999, 24(2): 125-140. doi: 10.1016/S0266-352X(98)00035-4
|
[7] |
LI X, BERRONES R F. Time-dependent behavior of partially sealed circular tunnels[J]. Computers and Geotechnics, 2002, 29(6): 433-449. doi: 10.1016/S0266-352X(02)00005-8
|
[8] |
王志良, 刘铭, 谢建斌, 等. 盾构施工引起地表固结沉降问题的研究[J]. 岩土力学, 2013, 34(增刊1): 127-133. doi: 10.16285/j.rsm.2013.s1.045
WANG Zhi-liang, LIU Ming, XIE Jian-bin, et al. Research on consolidation settlement of ground surface caused by shield tunneling[J]. Rock and Soil Mechanics, 2013, 34(S1): 127-133. (in Chinese) doi: 10.16285/j.rsm.2013.s1.045
|
[9] |
申林方, 王志良, 魏纲, 等. 盾构施工引起土体超孔隙水压力消散问题的研究[J]. 铁道学报, 2015, 37(6): 112-118. doi: 10.3969/j.issn.1001-8360.2015.06.016
SHEN Lin-fang, WANG Zhi-liang, WEI Gang, et al. Research on dissipation of excess pore water pressure caused by shield tunneling[J]. Journal of the China Railway Society, 2015, 37(6): 112-118. (in Chinese) doi: 10.3969/j.issn.1001-8360.2015.06.016
|
[10] |
詹美礼, 钱家欢, 陈绪禄. 黏弹性地基中洞周土体固结问题的解析解[J]. 河海大学学报, 1993, 21(2): 54-60.
ZHAN Mei-li, QIAN Jia-huan, CHEN Xu-lu. Theoretical analysis for consolidation of viscoelastic clay about circular tunnels in foundations[J]. Journal of Hohai University, 1993, 21(2): 54-60. (in Chinese)
|
[11] |
王志良, 瞿嘉安, 申林方, 等. 泥炭质土层盾构施工扰动引起隧道长期沉降的研究[J]. 岩土工程学报, 2017, 39(8): 1416-1424. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201708011.htm
WANG Zhi-liang, QU Jia-an, SHEN Lin-fang, et al. Long-term settlement of tunnel caused by shield tunneling in peaty soil[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(8): 1416-1424. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201708011.htm
|
[12] |
李翔宇, 刘国彬, 刘铭, 等. 考虑半渗透边界的隧道周围超孔隙水压力消散解[J]. 岩土工程学报, 2014, 36(1): 75-82. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201401008.htm
LI Xiang-yu, LIU Guo-bin, LIU Ming, et al. Analytical study on dissipation of excess pore water pressures around tunnels with semi-permeable boundary condition[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(1): 75-82. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201401008.htm
|
[13] |
刘干斌, 谢康和, 施祖元. 黏弹性土体中深埋圆形隧道的应力和位移分析[J]. 工程力学, 2004, 21(5): 132-138. doi: 10.3969/j.issn.1000-4750.2004.05.028
LIU Gan-bin, XIE Kang-he, SHI Zu-yuan, et al. Analysis of stress and displacement around a deep circular tunnel in viscoelastic soil[J]. Engineering Mechanics, 2004, 21(5): 132-138. (in Chinese) doi: 10.3969/j.issn.1000-4750.2004.05.028
|
[14] |
ZHANG C Y. Viscoelastic Fracture Mechanics[M]. Beijing: Science Press, 2006.
|
[15] |
刘忠玉, 杨强. 基于分数阶Kelvin模型的饱和黏土一维流变固结分析[J]. 岩土力学, 2017, 38(12): 3680-3697. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201712037.htm
LIU Zhong-yu, YANG Qiang. One-dimensional rheological consolidation analysis of saturated clay using fractional order Kelvin's model[J]. Rock and Soil Mechanics, 2017, 38(12): 3680-3697. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201712037.htm
|
[16] |
PODLUBNY I. Fractional Differential Equations[M]. California: Academic Press, 1999.
|
[17] |
YIN D S, WU H, CHENG C, et al. Fractional order constitutive model of geomaterials under the condition of triaxial test[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2013, 37(8): 961-972. doi: 10.1002/nag.2139
|
[18] |
GEMANT A. A method of analyzing experimental results obtained from elasto-viscous bodies[J]. Journal of Applied Physics, 1936, 7(1): 311-317.
|
[19] |
BAGLEY R L, TORVIK P J. On the fractional calculus model of viscoelasticity behavior[J]. Journal of Rheology, 1986, 30(1): 133-155. doi: 10.1122/1.549887
|
[20] |
KOELLER R C. Application of fractional calculus to the theory of viscoelasticity[J]. Journal of Applied Mechanics, 1984, 51(2): 299-307. doi: 10.1115/1.3167616
|
[21] |
赵永玲, 侯之超. 基于分数导数的橡胶材料两种黏弹性本构模型[J]. 清华大学学报(自然科学版), 2013, 53(3): 378-383. https://www.cnki.com.cn/Article/CJFDTOTAL-QHXB201303017.htm
ZHAO Yong-ling, HOU Zhi-chao. Two viscoelastic constitutive models of rubber materials using fractional derivations[J]. Journal of Tsinghua University (Science and Technology), 2013, 53(3): 378-383. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QHXB201303017.htm
|
[22] |
孙雅珍, 朱传江, 王立保. 基于分数阶导数沥青路面松弛应力强度因子分析[J]. 中外公路, 2015, 25(2): 65-68. https://www.cnki.com.cn/Article/CJFDTOTAL-GWGL201502016.htm
SUN Ya-zhen, ZHU Chuan-jiang, WANG Li-bao. Analysis based on fractional derivative asphalt pavement relaxed stress intensity factor[J]. Journal of China and Foreign Highway, 2015, 25(2): 65-68. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GWGL201502016.htm
|
[23] |
刘林超, 闫启方, 孙海忠. 软土流变特性的模型研究[J]. 岩土力学, 2006, 27(增刊1): 214-217. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2006S1048.htm
LIU Lin-chao, YAN Qi-fang, SUN Hai-zhong. Study on model of rheological property of soft clay[J]. Rock and Soil Mechanics, 2006, 27(S1): 214-217. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2006S1048.htm
|
[24] |
孙海忠, 张卫. 一种分析软土黏弹性的分数导数开尔文模型[J]. 岩土力学, 2007, 28(9): 1983-1986. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200709040.htm
SUN Hai-zhong, ZHANG Wei. Analysis of soft soil with viscoelastic fractional derivative Kelvin model[J]. Rock and Soil Mechanics, 2007, 28(9): 1983-1986. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200709040.htm
|
[25] |
ZHU H H, ZHANG C C, MEI G X, et al. Prediction of one-dimensional compression behavior of Nansha clay using fractional derivatives[J]. Marine Georesources & Geotechnology, 2016, 35(5): 688-697.
|
[26] |
何利军, 孔令伟, 吴文军, 等. 采用分数阶导数描述软黏土蠕变的模型[J]. 岩土力学, 2011, 32(增刊1): 239-249. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2011S2039.htm
HE Li-jun, KONG Ling-wei, WU Wen-jun, et al. A description of creep model for soft soil with fractional derivative[J]. Rock and Soil Mechanics, 2011, 32(S1): 239-249. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2011S2039.htm
|
[27] |
李锐铎, 乐金朝. 基于分数阶导数的软土非线性流变本构模型[J]. 应用基础与工程科学学报, 2014, 22(5): 856-863. https://www.cnki.com.cn/Article/CJFDTOTAL-YJGX201405002.htm
LI Rui-duo, YUE Jin-chao. Nonlinear rheological constitute of soft soil based on fractional order derivative theory[J]. Journal of Basis Science and Engineering, 2014, 22(5): 856-863. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YJGX201405002.htm
|
[28] |
WANG L, SUN D A, LI P C, et al. Semi-analytical solution for one-dimensional consolidation of fractional derivative viscoelastic saturated soils[J]. Computers and Geotechnics, 2017, 83: 30-39.
|
[29] |
解益, 李培超, 汪磊, 等. 分数阶导数黏弹性饱和土体一维固结半解析解[J]. 岩土力学, 2017, 38(11): 3240-3246. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201711021.htm
XIE Yi, LI Pei-chao, WANG Lei, et al. Semi-analytical solution for one-dimensional consolidation of viscoelastic saturated soil with fractional order derivative[J]. Rock and Soil Mechanics, 2017, 38(11): 3240-3246. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201711021.htm
|
[30] |
刘忠玉, 崔鹏陆, 郑占垒. 基于非牛顿指数渗流和分数阶Merchant模型的一维流变固结分析[J]. 岩土力学, 2019, 40(6): 2029-2038. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201906002.htm
LIU Zhong-yu, CUI Peng-lu, ZHENG Zhan-lei, et al. Analysis of one-dimensional rheological consolidation with flow described by non-Newtonian index and fractional-order Merchant's model[J]. Rock and Soil Mechanics, 2019, 40(6): 2029-2038. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201906002.htm
|
[31] |
汪磊, 李林忠, 徐永福, 等. 半透水边界下分数阶黏弹性饱和土一维固结特性分析[J]. 岩土力学, 2018, 39(11): 4142-4148. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201811029.htm
WANG Lei, LI Lin-zhong, XU Yong-fu, et al. Analysis of one-dimensional consolidation of fractional viscoelastic saturated soils with semi-permeable boundary[J]. Rock and Soil Mechanics, 2018, 39(11): 4142-4148. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201811029.htm
|
[32] |
李林忠, 汪磊, 李培超, 等. 任意荷载下双面半透水边界分数阶导数黏弹性饱和土层一维固结[J]. 工程地质学报, 2018, 26(6): 1480-1489. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201806010.htm
LI Lin-zhong, WANG Lei, LI Pei-chao, et al. One-dimensional consolidation of fractional derivative viscoelastic saturated soil layer with symmetric semi-permeable boundaries under arbitrary loading[J]. Journal of Engineering Geology, 2018, 26(6): 1480-1489. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201806010.htm
|
[33] |
田乙, 吴文兵, 蒋国盛, 等. 连续排水边界下分数阶黏弹性饱和土体一维固结分析[J]. 岩土力学, 2019, 40(8): 3054-3061. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201908022.htm
TIAN Yi, WU Wen-bing, JIANG Guo-sheng, et al. One-dimensional consolidation of viscoelastic saturated soils with fractional order derivative based on continuous drainage boundary[J]. Rock and Soil Mechanics, 2019, 40(8): 3054-3061. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201908022.htm
|
[34] |
HUANG M H, LI J C. Consolidation of viscoelastic soil by vertical drains incorporating fractional-derivative model and time-dependent loading[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2019, 43(1): 239-256.
|
[35] |
HUANG M H, LI D. A One-dimensional fractional- derivative viscoelastic model for the aquitard consolidation of an aquifer system[J]. Geofluids, 2019(2): 1-11.
|
[36] |
CRUMP K S. Numerical inversion of Laplace transforms using a Fourier series approximation[J]. Journal of the Association for Computing Machinery, 1976, 23(1): 89-96.
|
[37] |
张先伟, 王常明. 结构性软土的黏滞系数[J]. 岩土力学, 2011, 32(11): 3276-3282. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201111015.htm
ZHANG Xian-wei, WANG Chang-ming. Viscosity coefficient of structural soft clay[J]. Rock and Soil Mechanics, 2011, 32(11): 3276-3282. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201111015.htm
|
[38] |
XIE K H, XIE X Y, LI B H. Analytical theory for one-dimensional consolidation of clayey soils exhibiting rheological characteristics under time-dependent loading[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2008, 32(14): 1833-1855.
|