• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
HUANG Ming-hua, HU Ke-xin, ZHAO Ming-hua. Dissipation characteristics of excess pore-water pressure around tunnels in viscoelastic foundation using a fractional-derivative model[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(8): 1446-1455. DOI: 10.11779/CJGE202008009
Citation: HUANG Ming-hua, HU Ke-xin, ZHAO Ming-hua. Dissipation characteristics of excess pore-water pressure around tunnels in viscoelastic foundation using a fractional-derivative model[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(8): 1446-1455. DOI: 10.11779/CJGE202008009

Dissipation characteristics of excess pore-water pressure around tunnels in viscoelastic foundation using a fractional-derivative model

More Information
  • Received Date: September 01, 2019
  • Available Online: December 05, 2022
  • The dissipation characteristics of the excess pore-water pressure around tunnels in viscoelastic foundation are investigated by using a fractional-derivative model. Firstly, the fractional-derivative Merchant model is introduced to describe the rheological behavior of the saturated soft foundation around tunnels, and its compliance function is deduced by means of the Laplace transform and its inverse transform. Secondly, using the methods of conformal mapping and variable separating, two independent equations only including the variable of time and only including the variable of space are derived from the partial differential equation governing the dissipation of the excess pore-water pressure during two-dimensional consolidation process, and the analytical solution of the excess pore-water pressure is also formulated in the Laplace domain. Thirdly, the numerical method for the excess pore-water pressure in the time domain is presented based on the Crump method. The developed solution is simplified into two special cases for the elastic foundation and viscoelastic foundation of integer order, and its correctness is validated against the existing solutions of these two special cases. Finally, using the developed solution, the dissipation characteristics of the excess pore-water pressure around tunnels are investigated, and the influences of fractional order, modulus ratio, viscosity coefficient and boundary condition are discussed. The results show that the influences of the fractional order and viscosity coefficient on the dissipation of the excess pore-water pressure have two distinct stages. In the early stage, larger fractional order and larger viscosity coefficient bring about faster dissipation of the excess pore-water pressure; while at the later stage, they lead to slower dissipation of the excess pore-water pressure. Larger modulus ratio means softer foundation, and it also results in slower dissipation of the excess pore-water pressure. In addition, at the middle stage, the modulus ratio has a much greater influence. In the early stage, the effect of the inner boundary condition on the excess pore-water pressure mainly emerges on the regions close to the tunnels, and then this effect is spread far away.
  • [1]
    YI X, ROWE, R K, LEE K M. Observed and calculated pore pressures and deformations induced by an earth balance shield[J]. Canadian Geotechnical Journal, 1993, 30(3): 476-490. doi: 10.1139/t93-041
    [2]
    SHIRLAW J N. Observed and calculated pore pressures and deformations induced by an earth balance shield: discussion[J]. Canadian Geotechnical Journal, 1995, 32(1): 181-189. doi: 10.1139/t95-017
    [3]
    童磊. 软土浅埋隧道变形、渗流及固结性状研究[D]. 杭州: 浙江大学, 2010.

    TONG Lei. Studies on Land Subsidence, Seepage Field and Consolidation Behavior of Soft Soil Around a Shallow Circular Tunnel[D]. Hangzhou: Zhejiang University, 2010. (in Chinese)
    [4]
    CATER J P, SMALL J C, BOOKER J R. A theory of finite elastic consolidation[J]. International Journal of Solids and Structures, 1977, 13(5): 467-478. doi: 10.1016/0020-7683(77)90041-5
    [5]
    CATER J P, BOOKER J R. Elastic consolidation around a deep circular tunnel[J]. International Journal of Solids and Structures, 1982, 18(12): 1059-1074. doi: 10.1016/0020-7683(82)90093-2
    [6]
    LI X. Stress and displacement field around a deep circular tunnel with partial sealing[J]. Computers and Geotechnics, 1999, 24(2): 125-140. doi: 10.1016/S0266-352X(98)00035-4
    [7]
    LI X, BERRONES R F. Time-dependent behavior of partially sealed circular tunnels[J]. Computers and Geotechnics, 2002, 29(6): 433-449. doi: 10.1016/S0266-352X(02)00005-8
    [8]
    王志良, 刘铭, 谢建斌, 等. 盾构施工引起地表固结沉降问题的研究[J]. 岩土力学, 2013, 34(增刊1): 127-133. doi: 10.16285/j.rsm.2013.s1.045

    WANG Zhi-liang, LIU Ming, XIE Jian-bin, et al. Research on consolidation settlement of ground surface caused by shield tunneling[J]. Rock and Soil Mechanics, 2013, 34(S1): 127-133. (in Chinese) doi: 10.16285/j.rsm.2013.s1.045
    [9]
    申林方, 王志良, 魏纲, 等. 盾构施工引起土体超孔隙水压力消散问题的研究[J]. 铁道学报, 2015, 37(6): 112-118. doi: 10.3969/j.issn.1001-8360.2015.06.016

    SHEN Lin-fang, WANG Zhi-liang, WEI Gang, et al. Research on dissipation of excess pore water pressure caused by shield tunneling[J]. Journal of the China Railway Society, 2015, 37(6): 112-118. (in Chinese) doi: 10.3969/j.issn.1001-8360.2015.06.016
    [10]
    詹美礼, 钱家欢, 陈绪禄. 黏弹性地基中洞周土体固结问题的解析解[J]. 河海大学学报, 1993, 21(2): 54-60.

    ZHAN Mei-li, QIAN Jia-huan, CHEN Xu-lu. Theoretical analysis for consolidation of viscoelastic clay about circular tunnels in foundations[J]. Journal of Hohai University, 1993, 21(2): 54-60. (in Chinese)
    [11]
    王志良, 瞿嘉安, 申林方, 等. 泥炭质土层盾构施工扰动引起隧道长期沉降的研究[J]. 岩土工程学报, 2017, 39(8): 1416-1424. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201708011.htm

    WANG Zhi-liang, QU Jia-an, SHEN Lin-fang, et al. Long-term settlement of tunnel caused by shield tunneling in peaty soil[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(8): 1416-1424. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201708011.htm
    [12]
    李翔宇, 刘国彬, 刘铭, 等. 考虑半渗透边界的隧道周围超孔隙水压力消散解[J]. 岩土工程学报, 2014, 36(1): 75-82. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201401008.htm

    LI Xiang-yu, LIU Guo-bin, LIU Ming, et al. Analytical study on dissipation of excess pore water pressures around tunnels with semi-permeable boundary condition[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(1): 75-82. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201401008.htm
    [13]
    刘干斌, 谢康和, 施祖元. 黏弹性土体中深埋圆形隧道的应力和位移分析[J]. 工程力学, 2004, 21(5): 132-138. doi: 10.3969/j.issn.1000-4750.2004.05.028

    LIU Gan-bin, XIE Kang-he, SHI Zu-yuan, et al. Analysis of stress and displacement around a deep circular tunnel in viscoelastic soil[J]. Engineering Mechanics, 2004, 21(5): 132-138. (in Chinese) doi: 10.3969/j.issn.1000-4750.2004.05.028
    [14]
    ZHANG C Y. Viscoelastic Fracture Mechanics[M]. Beijing: Science Press, 2006.
    [15]
    刘忠玉, 杨强. 基于分数阶Kelvin模型的饱和黏土一维流变固结分析[J]. 岩土力学, 2017, 38(12): 3680-3697. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201712037.htm

    LIU Zhong-yu, YANG Qiang. One-dimensional rheological consolidation analysis of saturated clay using fractional order Kelvin's model[J]. Rock and Soil Mechanics, 2017, 38(12): 3680-3697. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201712037.htm
    [16]
    PODLUBNY I. Fractional Differential Equations[M]. California: Academic Press, 1999.
    [17]
    YIN D S, WU H, CHENG C, et al. Fractional order constitutive model of geomaterials under the condition of triaxial test[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2013, 37(8): 961-972. doi: 10.1002/nag.2139
    [18]
    GEMANT A. A method of analyzing experimental results obtained from elasto-viscous bodies[J]. Journal of Applied Physics, 1936, 7(1): 311-317.
    [19]
    BAGLEY R L, TORVIK P J. On the fractional calculus model of viscoelasticity behavior[J]. Journal of Rheology, 1986, 30(1): 133-155. doi: 10.1122/1.549887
    [20]
    KOELLER R C. Application of fractional calculus to the theory of viscoelasticity[J]. Journal of Applied Mechanics, 1984, 51(2): 299-307. doi: 10.1115/1.3167616
    [21]
    赵永玲, 侯之超. 基于分数导数的橡胶材料两种黏弹性本构模型[J]. 清华大学学报(自然科学版), 2013, 53(3): 378-383. https://www.cnki.com.cn/Article/CJFDTOTAL-QHXB201303017.htm

    ZHAO Yong-ling, HOU Zhi-chao. Two viscoelastic constitutive models of rubber materials using fractional derivations[J]. Journal of Tsinghua University (Science and Technology), 2013, 53(3): 378-383. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QHXB201303017.htm
    [22]
    孙雅珍, 朱传江, 王立保. 基于分数阶导数沥青路面松弛应力强度因子分析[J]. 中外公路, 2015, 25(2): 65-68. https://www.cnki.com.cn/Article/CJFDTOTAL-GWGL201502016.htm

    SUN Ya-zhen, ZHU Chuan-jiang, WANG Li-bao. Analysis based on fractional derivative asphalt pavement relaxed stress intensity factor[J]. Journal of China and Foreign Highway, 2015, 25(2): 65-68. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GWGL201502016.htm
    [23]
    刘林超, 闫启方, 孙海忠. 软土流变特性的模型研究[J]. 岩土力学, 2006, 27(增刊1): 214-217. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2006S1048.htm

    LIU Lin-chao, YAN Qi-fang, SUN Hai-zhong. Study on model of rheological property of soft clay[J]. Rock and Soil Mechanics, 2006, 27(S1): 214-217. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2006S1048.htm
    [24]
    孙海忠, 张卫. 一种分析软土黏弹性的分数导数开尔文模型[J]. 岩土力学, 2007, 28(9): 1983-1986. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200709040.htm

    SUN Hai-zhong, ZHANG Wei. Analysis of soft soil with viscoelastic fractional derivative Kelvin model[J]. Rock and Soil Mechanics, 2007, 28(9): 1983-1986. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200709040.htm
    [25]
    ZHU H H, ZHANG C C, MEI G X, et al. Prediction of one-dimensional compression behavior of Nansha clay using fractional derivatives[J]. Marine Georesources & Geotechnology, 2016, 35(5): 688-697.
    [26]
    何利军, 孔令伟, 吴文军, 等. 采用分数阶导数描述软黏土蠕变的模型[J]. 岩土力学, 2011, 32(增刊1): 239-249. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2011S2039.htm

    HE Li-jun, KONG Ling-wei, WU Wen-jun, et al. A description of creep model for soft soil with fractional derivative[J]. Rock and Soil Mechanics, 2011, 32(S1): 239-249. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2011S2039.htm
    [27]
    李锐铎, 乐金朝. 基于分数阶导数的软土非线性流变本构模型[J]. 应用基础与工程科学学报, 2014, 22(5): 856-863. https://www.cnki.com.cn/Article/CJFDTOTAL-YJGX201405002.htm

    LI Rui-duo, YUE Jin-chao. Nonlinear rheological constitute of soft soil based on fractional order derivative theory[J]. Journal of Basis Science and Engineering, 2014, 22(5): 856-863. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YJGX201405002.htm
    [28]
    WANG L, SUN D A, LI P C, et al. Semi-analytical solution for one-dimensional consolidation of fractional derivative viscoelastic saturated soils[J]. Computers and Geotechnics, 2017, 83: 30-39.
    [29]
    解益, 李培超, 汪磊, 等. 分数阶导数黏弹性饱和土体一维固结半解析解[J]. 岩土力学, 2017, 38(11): 3240-3246. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201711021.htm

    XIE Yi, LI Pei-chao, WANG Lei, et al. Semi-analytical solution for one-dimensional consolidation of viscoelastic saturated soil with fractional order derivative[J]. Rock and Soil Mechanics, 2017, 38(11): 3240-3246. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201711021.htm
    [30]
    刘忠玉, 崔鹏陆, 郑占垒. 基于非牛顿指数渗流和分数阶Merchant模型的一维流变固结分析[J]. 岩土力学, 2019, 40(6): 2029-2038. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201906002.htm

    LIU Zhong-yu, CUI Peng-lu, ZHENG Zhan-lei, et al. Analysis of one-dimensional rheological consolidation with flow described by non-Newtonian index and fractional-order Merchant's model[J]. Rock and Soil Mechanics, 2019, 40(6): 2029-2038. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201906002.htm
    [31]
    汪磊, 李林忠, 徐永福, 等. 半透水边界下分数阶黏弹性饱和土一维固结特性分析[J]. 岩土力学, 2018, 39(11): 4142-4148. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201811029.htm

    WANG Lei, LI Lin-zhong, XU Yong-fu, et al. Analysis of one-dimensional consolidation of fractional viscoelastic saturated soils with semi-permeable boundary[J]. Rock and Soil Mechanics, 2018, 39(11): 4142-4148. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201811029.htm
    [32]
    李林忠, 汪磊, 李培超, 等. 任意荷载下双面半透水边界分数阶导数黏弹性饱和土层一维固结[J]. 工程地质学报, 2018, 26(6): 1480-1489. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201806010.htm

    LI Lin-zhong, WANG Lei, LI Pei-chao, et al. One-dimensional consolidation of fractional derivative viscoelastic saturated soil layer with symmetric semi-permeable boundaries under arbitrary loading[J]. Journal of Engineering Geology, 2018, 26(6): 1480-1489. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201806010.htm
    [33]
    田乙, 吴文兵, 蒋国盛, 等. 连续排水边界下分数阶黏弹性饱和土体一维固结分析[J]. 岩土力学, 2019, 40(8): 3054-3061. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201908022.htm

    TIAN Yi, WU Wen-bing, JIANG Guo-sheng, et al. One-dimensional consolidation of viscoelastic saturated soils with fractional order derivative based on continuous drainage boundary[J]. Rock and Soil Mechanics, 2019, 40(8): 3054-3061. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201908022.htm
    [34]
    HUANG M H, LI J C. Consolidation of viscoelastic soil by vertical drains incorporating fractional-derivative model and time-dependent loading[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2019, 43(1): 239-256.
    [35]
    HUANG M H, LI D. A One-dimensional fractional- derivative viscoelastic model for the aquitard consolidation of an aquifer system[J]. Geofluids, 2019(2): 1-11.
    [36]
    CRUMP K S. Numerical inversion of Laplace transforms using a Fourier series approximation[J]. Journal of the Association for Computing Machinery, 1976, 23(1): 89-96.
    [37]
    张先伟, 王常明. 结构性软土的黏滞系数[J]. 岩土力学, 2011, 32(11): 3276-3282. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201111015.htm

    ZHANG Xian-wei, WANG Chang-ming. Viscosity coefficient of structural soft clay[J]. Rock and Soil Mechanics, 2011, 32(11): 3276-3282. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201111015.htm
    [38]
    XIE K H, XIE X Y, LI B H. Analytical theory for one-dimensional consolidation of clayey soils exhibiting rheological characteristics under time-dependent loading[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2008, 32(14): 1833-1855.

Catalog

    Article views (273) PDF downloads (142) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return