Citation: | YU Jiake, WANG Rui, ZHANG Jianmin. Constitutive model simulation for mechanical response of anisotropic sand under different principal stress directions[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(3): 670-677. DOI: 10.11779/CJGE20221454 |
[1] |
JEFFERIES M, BEEN K. Soil Liquefaction: A Critical State Approach[M]. New York: CRC press, 2015.
|
[2] |
CHU J, LEONG W, LOKE W, et al. Instability of loose sand under drained conditions[J]. J Geotech Geoenviron Eng, 2012, 138(2): 207-16. doi: 10.1061/(ASCE)GT.1943-5606.0000574
|
[3] |
BRAND E. Some thoughts on rain-induced slope failures[J]. Proc 10th ICSMFE, 1981, 3: 373-6.
|
[4] |
ANDERSON S A, RIEMER M F. Collapse of saturated soil due to reduction in confinement[J]. Journal of Geotechnical Engineering, 1995, 121(2): 216-20. doi: 10.1061/(ASCE)0733-9410(1995)121:2(216)
|
[5] |
ANDERSON SCOTT A, SITAR N. Analysis of Rainfall-Induced Debris Flows [J]. Journal of Geotechnical Engineering, 1995, 121(7): 544-52. doi: 10.1061/(ASCE)0733-9410(1995)121:7(544)
|
[6] |
CHU J, LEROUEIL S, LEONG W. Unstable behaviour of sand and its implication for slope instability[J]. Canadian Geotechnical Journal, 2003, 40(5): 873-85. doi: 10.1139/t03-039
|
[7] |
LASHKARI A, KHODADADI M, BINESH S M, et al. Instability of particulate assemblies under constant shear drained stress path: DEM approach[J]. International Journal of Geomechanics, 2019, 19(6): 04019049. doi: 10.1061/(ASCE)GM.1943-5622.0001407
|
[8] |
FANNI R, REID D, FOURIE A. Effect of principal stress direction on the instability of sand under the constant shear drained stress path[J]. Géotechnique, 2022: 1-17.
|
[9] |
YANG J, LI X. State-dependent strength of sands from the perspective of unified modeling[J]. J Geotech Geoenviron Eng, 2004, 130(2): 186-98. doi: 10.1061/(ASCE)1090-0241(2004)130:2(186)
|
[10] |
GUO P. Modified direct shear test for anisotropic strength of sand[J]. J Geotech Geoenviron Eng, 2008, 134(9): 1311-8. doi: 10.1061/(ASCE)1090-0241(2008)134:9(1311)
|
[11] |
ODA M. Initial fabrics and their relations to mechanical properties of granular material[J]. Soils and Foundations, 1972, 12(1): 17-36. doi: 10.3208/sandf1960.12.17
|
[12] |
PRADHAN T B, TATSUOKA F, HORII N. Simple shear testing on sand in a torsional shear apparatus[J]. Soils and Foundations, 1988, 28(2): 95-112. doi: 10.3208/sandf1972.28.2_95
|
[13] |
TATSUOKA F, SAKAMOTO M, KAWAMURA T, et al. Strength and deformation characteristics of sand in plane strain compression at extremely low pressures[J]. Soils and Foundations, 1986, 26(1): 65-84. doi: 10.3208/sandf1972.26.65
|
[14] |
YANG Z, LI X, YANG J. Undrained anisotropy and rotational shear in granular soil[J]. Géotechnique, 2007, 57(4): 371-84. doi: 10.1680/geot.2007.57.4.371
|
[15] |
杨仲轩, 闫珞洢, 余洋, 等. 土的组构各向异性及其本构模拟研究进展[J]. 地基处理, 2022, 4(4): 279-288. https://www.cnki.com.cn/Article/CJFDTOTAL-DJCL202204002.htm
YANG Zhongxuan, YAN Luoyi, YU Yang, et al. Overview of fabric anisotropy of soils and constitutive model developments[J]. Journal of Ground Improvement, 2022, 4(4): 279-288. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DJCL202204002.htm
|
[16] |
童朝霞, 周少鹏, 姚仰平, 等. 测定各向异性砂土抗剪强度特性的新型直剪装置及初步应用[J]. 岩石力学与工程学报, 2012, 31(12): 2579-2584. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201212024.htm
TONG Zhaoxia, ZHOU Shaopeng, YAO Yangping, et al. An improved direct shear apparatus for shear strength of anisotropic sands and its primary application[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(12): 2579-2584. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201212024.htm
|
[17] |
YOSHIMINE M, ISHIHARA K, VARGAS W. Effects of principal stress direction and intermediate principal stress on undrained shear behavior of sand[J]. Soils and Foundations, 1998, 38(3): 179-88. doi: 10.3208/sandf.38.3_179
|
[18] |
NAKATA Y, HYODO M, MURATA H, et al. Flow deformation of sands subjected to principal stress rotation[J]. Soils and Foundations, 1998, 38(2): 115-28. doi: 10.3208/sandf.38.2_115
|
[19] |
FU P, DAFALIAS Y F. Study of anisotropic shear strength of granular materials using DEM simulation[J]. Int J Numer Anal Methods Geomech, 2011, 35(10): 1098-126. doi: 10.1002/nag.945
|
[20] |
GAO Z, ZHAO J, YAO Y. A generalized anisotropic failure criterion for geomaterials[J]. Int J Solids Struct, 2010, 47(22/23): 3166-85.
|
[21] |
LIAO D, YANG Z, WANG S, et al. Hypoplastic model with fabric change effect and semifluidized state for post-liquefaction cyclic behavior of sand[J]. Int J Numer Anal Methods Geomech, 2022, 46(17): 3154-77. doi: 10.1002/nag.3444
|
[22] |
WANG R, CAO W, XUE L, et al. An anisotropic plasticity model incorporating fabric evolution for monotonic and cyclic behavior of sand[J]. Acta Geotech, 2021, 16(1): 43-65. doi: 10.1007/s11440-020-00984-y
|
[23] |
姚仰平, 唐科松. 土的各向同性化变换应力方法[J]. 力学学报, 2022, 54(6): 1651-1659, I0003. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB202206015.htm
YAO Yangping, TANG Kesong. Isotropically transformed stress method for the anisotropy of soils[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(6): 1651-1659, I0003. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB202206015.htm
|
[24] |
WANG R, ZHANG J M, WANG G. A unified plasticity model for large post-liquefaction shear deformation of sand[J]. Computers and Geotechnics, 2014, 59: 54-66. doi: 10.1016/j.compgeo.2014.02.008
|
[25] |
张建民. 砂土的可逆性和不可逆性剪胀规律[J]. 岩土工程学报, 2000, 22(1): 12-17. http://cge.nhri.cn/cn/article/id/10443
ZHANG Jianmin. Reversible and irreversible dilatancy of sand[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(1): 12-17. (in Chinese) http://cge.nhri.cn/cn/article/id/10443
|
[26] |
张建民, 罗刚. 考虑可逆与不可逆剪胀的粗粒土动本构模型[J]. 岩土工程学报, 2005, 27(2): 178-184. doi: 10.3321/j.issn:1000-4548.2005.02.009
ZHANG Jianmin, LUO Gang. A new cyclic constitutive model for granular soil considering reversible and irreversible dilatancy[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(2): 178-184. (in Chinese) doi: 10.3321/j.issn:1000-4548.2005.02.009
|
[27] |
王刚, 张建民. 砂土液化大变形的弹塑性循环本构模型[J]. 岩土工程学报, 2007, 29(1): 51-59. http://cge.nhri.cn/cn/article/id/12274
WANG Gang, ZHANG Jianmin. A cyclic elasto-plastic constitutive model for evaluating large liquefaction-induced deformation of sand[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(1): 51-59. (in Chinese) http://cge.nhri.cn/cn/article/id/12274
|
[28] |
RICHART F E, HALL J R, WOODS R D. Vibrations of Soils and Foundations[M]. New York: Prentice-Hall, 1970.
|
[29] |
BEEN K, JEFFERIES M G. A state parameter for sands[J]. Géotechnique, 1985, 35(2): 99-112. doi: 10.1680/geot.1985.35.2.99
|
[30] |
LI X S, WANG Y. Linear representation of steady-state line for sand[J]. J Geotech Geoenviron Eng, 1998, 124(12): 1215-1221. doi: 10.1061/(ASCE)1090-0241(1998)124:12(1215)
|
[31] |
ROSCOE K H, SCHOFIELD A N, WROTH C P. On the yielding of soils[J]. Géotechnique, 1958, 8(1): 22-53. doi: 10.1680/geot.1958.8.1.22
|
[32] |
LIU H, SONG E, LING H I. Constitutive modeling of soil-structure interface through the concept of critical state soil mechanics[J]. Mechanics Research Communications, 2006, 33(4): 515-531. doi: 10.1016/j.mechrescom.2006.01.002
|
[33] |
DAFALIAS Y F, MANZARI M T. Simple plasticity sand model accounting for fabric change effects[J]. Journal of Engineering Mechanics, 2004, 130(6): 622-634. doi: 10.1061/(ASCE)0733-9399(2004)130:6(622)
|
[34] |
姚仰平, 张民生, 万征, 等. 基于临界状态的砂土本构模型研究[J]. 力学学报, 2018, 50(3): 589-598. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201803015.htm
YAO Yangping, ZHANG Minsheng, WAN Zheng, et al. Constitutive model for sand based on the critical state[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(3): 589-598. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201803015.htm
|
[35] |
ZHANG J M. Cyclic Critical Stress State Theory of Sand with Its Application to Geotechnical Problems[D]. Tokyo: Tokyo Institute of Technology, 1997.
|
[36] |
MIURA S, TOKI S. A sample preparation method and its effect on static and cyclic deformation-strength properties of sand[J]. Soils and Foundations, 1982, 22(1): 61-77. doi: 10.3208/sandf1972.22.61
|
[37] |
YANG Z, LI X, YANG J. Quantifying and modelling fabric anisotropy of granular soils[J]. Géotechnique, 2008, 58(4): 237-248. doi: 10.1680/geot.2008.58.4.237
|
[38] |
叶斌, 宋思聪, 倪雪倩. 制样方法对砂土液化力学性质影响的离散元模拟[J]. 同济大学学报(自然科学版), 2022, 50(7): 998-1008. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ202207010.htm
YE Bin, SONG Sicong, NI Xueqian. Effects of sample preparation method on sand liquefaction mechanical properties with discrete element simulation[J]. Journal of Tongji University (Natural Science), 2022, 50(7): 998-1008. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ202207010.htm
|
1. |
刘奇,牛家宝,李青海,赵金海,訾建潇. 采动覆岩裂隙演化的光纤监测耦合性及分带表征. 煤炭学报. 2024(03): 1345-1357 .
![]() |