• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
CHEN Cun-li, JIA Ya-jun, WANG Jun-fu, ZHAO Jie, ZHANG Yang. Characteristics of principal stress of compacted loess in plane strain direction[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S1): 16-21. DOI: 10.11779/CJGE2018S1003
Citation: CHEN Cun-li, JIA Ya-jun, WANG Jun-fu, ZHAO Jie, ZHANG Yang. Characteristics of principal stress of compacted loess in plane strain direction[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S1): 16-21. DOI: 10.11779/CJGE2018S1003

Characteristics of principal stress of compacted loess in plane strain direction

More Information
  • Received Date: June 10, 2017
  • Published Date: August 24, 2018
  • The plane strain triaxial tests in which the minor active principal stress (also called σx) keeps invariable are performed on the compacted loess with different water contents. The influences of σx and water content (also called w) on characteristics of the principal stress in plane strain direction (also called σy) during loading are studied. Based on the test results, the expressions describing the bilinear relationships between the principal stress in the plane strain direction and that in other directions are proposed. It is verified whether or not σy can be predicted by the expressions for the intermediate principal stress based on different strength criteria for compacted loess. The test results show that σy is not the intermediate principal stress (also called σ2) but the minor principal stress (also called σ3) during the isotropic consolidation and the initial loading stage. The ratio of the principal stress in the plane strain direction to the minor active principal stress (also called σy/σx) fast increases after the gentle development stage with the increase of the ratio of the major active principal stress to the minor one (also called R), and the relationships between the principal stresses are respectively linear and nonlinear before and after the turning point. The ratio of the major active principal stress to the minor one at the turning point (also called Rz) is larger than that at the critical point where σy transforms σ2 to σ3 (also called Rc). w and σx have obvious influences on Rz but little ones on Rc. The effects of w and σx on σy/σx are little as R is small. The relationships between the principal stress parameter (=2σy/(σx+σz), also called K) and R can be describedas two-stage lines. The one is horizontal and K is constant Kc in the first stage. The other one is inclined upward in the second stage. The slope m and Kc are irrelevant to w and σx. The change of σy during the loading can be better predicted by the proposed bilinear function. The predicted results are approximately equal to the test ones only at the failure of soil samples, using the expressions for the intermediate
  • [1]
    殷宗泽, 赵航. 中主应力对土体本构关系的影响[J]. 河海大学学报, 1990, 18(5): 54-61.
    (YIN Zong-ze, ZHAO Hang.Effect of middle principal stress on constitutive relationship[J]. Journal of Hohai University, 1990, 18(5): 54-61. (in Chinese))
    [2]
    施维成, 朱俊高, 张博, 等. 粗粒土在平面应变条件下的强度特性研究[J]. 岩土工程学报, 2011, 33(12): 1974-1979.
    (SHI Wei-cheng, ZHU Jun-gao, ZHANG Bo, et al.Strength characteristics of coarse-grained soil under plane strain condition[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(12): 1974-1979. (in Chinese))
    [3]
    GEORGIADIS K, POTTS D M, ZDRAVKOVIC L.Modelling the shear strength of soils in the general stress space[J]. Computers and Geotechnics, 2004, 31: 357-364.
    [4]
    SATAKE M.Stress-deformation and strength characteristics of soil under three difference principal stresses[J]. Proceedings of Japan Society of Civil Engineering, 1976, 246: 137-138.
    [5]
    罗汀, 姚仰平, 松岡元. 基于SMP准则的土的平面应变强度公式[J]. 岩土力学, 2000, 21(4): 390-393.
    (LUO Ting, YAO Yang-ping, MATSUOKA H.Soil strength equation in plane strain based on SMP[J]. Rock and Soil Mechanics, 2000, 21(4): 390-393. (in Chinese))
    [6]
    李刚, 谢云, 陈正汉. 平面应变状态下黏性土破坏时的主应力公式[J]. 岩石力学与工程学报, 2004, 23(18): 3174-3177.
    (LI Gang, XIE Yun, CHEN Zheng-han.Formula of intermediate principal stress at failure for coherent soil inplane strain state[J]. Chinese Journal of Rock Mechanicsand Enginerring, 2004, 23(18): 3174-3177. (in Chinese))
    [7]
    LEE K L.Comparison of plane strain and triaxial tests on sand[J]. ASCE Journal of Soil Mechanics and Foundation Division, 1970, 96(SM3): 901-923.
    [8]
    YU M H, HE L N.A new model and theory on yield and failure of materials under the complex stress state[M]// Mechanical behavior of materials-VI. Oxford:Pergamon Press, 1991: 841-846.
    [9]
    李广信, 黄永男, 张其光. 土体平面应变方向上的主应力[J]. 岩土工程学报, 2001, 23(3): 358-361.
    (LI Guang-xin, HUANG Yong-nan, ZHANG Qi-guang.The principal stress of soil in the direction of plane strain[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(3): 358-361. (in Chinese))
    [10]
    李广信, 张其光,黄永男. 等应力比平面应变试验中主应力转换的研究[J]. 岩土力学, 2006, 27(11): 1867-1872.
    (LI Guang-xin, ZHANG Qi-guang, HUANG Yong-nan.Study on transforming of principal stresses in constant stress ration plane strain tests[J]. Rock and Soil Mechanics, 2006, 27(11): 1867-1872. (in Chinese))
    [11]
    曹泽民. 结构性对重塑黄土变形强度特性的影响[D]. 西安: 西安理工大学, 2013: 56-65.
    (CAO Ze-min.The influence of structure on deformation and strength of remolded loess[D]. Xi'an: Xi'an University of Technology, 2013: 56-65. (in Chinese))
    [12]
    张玉, 邵生俊. 平面应变条件下黄土的竖向加载变形与强度特性分析[J]. 土木工程学报, 2016, 49(3): 112-121.
    (An analysis of vertical loading deformation and strength characteristics of loess under plain strain condition[J]. China Civil Engineering Journal, 2016, 49(3): 112-121. (in Chinese))
    [13]
    路德春, 姚仰平, 周安楠. 土体平面应变条件下的主应力关系[J]. 岩石力学与工程学报, 2006, 25(11): 2320-2326.
    (LU De-chun, YAO Yang-ping, ZHOU An-nan.Relationship between principal stresses of soil mass under plane strain condition[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(11): 2320-2326. (in Chinese))
    [14]
    俞茂宏, 杨松岩, 刘春阳, 等. 统一平面应变滑移线场理论[J]. 土木土程学报, 1997, 30(2) : 14-26, 41.(YU Mao-hong, YANG Song-yan, LIU Chun-yang, et al. Unified plane-strain slip line field theory system[J]. China Civil Engineering Journal, 1997, 30(2) : 14-26, 41. (in Chinese))
  • Related Articles

    [1]HUANG Jianyou, YAN Yutao, DIAO Yu, ZHENG Gang, LI Kai, JIA Jianwei, LIU Yongchao. Horizontal deformation of piles controlled by capsule expansion technique[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(1): 85-95. DOI: 10.11779/CJGE20230993
    [2]WEI Ran, ZHANG Liya, XIAO Zhirui, YAN Jun, WANG Bo. Deformation and control mechanism of MICP-treated expansive soil[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S1): 92-96. DOI: 10.11779/CJGE2023S10050
    [3]ZHENG Gang. Method and application of deformation control of excavations in soft ground[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(1): 1-36. DOI: 10.11779/CJGE202201001
    [4]ZHANG Dong-mei, ZOU Wei-biao, YAN Jing-ya. Effective control of large transverse deformation of shield tunnels using grouting in soft deposits[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(12): 2203-2212. DOI: 10.11779/CJGE201412007
    [5]WANG Shu-guang. Deformation control of excavation engineering with complicated surroundings[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk1): 474-477.
    [6]LIU Huan-cun, LI Liang-jie, WANG Cheng-liang, WEI Hai-tao. Design and deformation control of excavation support project close to a subway station[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(suppl): 654-658.
    [7]LIU Shu-ya, OUYANG-Rong. Deformation of Shenzhen subway aroused by deep excavations andits risk control technology[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(suppl): 638-643.
    [8]LI Zhi-wei, HOU Wei-sheng, YE Ai-li, CHEN Ke-shuai, TANG Yong. Displacement control effect of passive zone improvement at excavation section of deep foundation pits[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(suppl): 621-627.
    [9]SUN Jian-ping, SHAO Guang-biao, JIANG Zong-bao. Design and construction technology of displacement control in deep miscellaneous fill foundation pits[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(suppl): 576-580.
    [10]GAO Meng, GAO Guangyun, FENG Shijin, YU Zhisong. Control of deformation of operating subway station induced by adjacent deep excavation[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(6): 818-823.
  • Cited by

    Periodical cited type(24)

    1. 张锐,周豫,兰天,郑健龙,刘昭京,李彬. 高速铁路土工格栅加筋膨胀土边坡作用机制. 铁道科学与工程学报. 2024(01): 1-12 .
    2. 段君义,吴俊江,粟雨,吕志涛,林宇亮,杨果林. 浅层膨胀土及其纤维改良土的剪切强度特性. 浙江大学学报(工学版). 2024(03): 547-556+569 .
    3. 陈强,秦子鹏,蒋宁,周林真,陈增然,秦玉禹,李桃,彭杨. 降雨和水位变化条件下排涝河道岸坡稳定性的数值研究. 水资源与水工程学报. 2024(01): 186-196 .
    4. 张德辉,刘伟明,冯善周,郝献省. 膨胀土边坡失稳与防治研究. 科技创新与生产力. 2024(04): 134-136+140 .
    5. 周葆春,王江伟,单丽霞,李颖,郎梦婷,孔令伟. 不同膨胀潜势等级的膨胀土残余强度环剪试验研究. 岩土工程学报. 2024(06): 1325-1331 . 本站查看
    6. 李世明,胡卫军,韩琳琳. 锚杆支护形式对高陡公路边坡稳定性的影响研究. 西部交通科技. 2024(05): 34-37 .
    7. 王骜洵,蒋函静,许帅,徐永福. 降雨入渗下非饱和土边坡浅层破坏机制分析. 中南大学学报(自然科学版). 2024(07): 2701-2711 .
    8. 冀春杰,胡贺松,崔皓,简思敏,蒋明烨,韦童. 典型特殊土处理技术研究进展. 广州建筑. 2024(04): 105-108 .
    9. 韦秉旭,曾警,程聪,陈楚方,王起. 基于流固耦合的加筋膨胀土边坡稳定性分析. 公路. 2024(09): 8-15 .
    10. 时小波,崔广炎,牟超,温野,谢峰,付啸阳. 高寒区上覆岩石层膨胀土失稳边坡治理方法研究. 中外公路. 2024(05): 17-24+38 .
    11. 白玉霞,常顺,肖衡林,李丽华,何俊,邱季,周文卓,邓永锋. 膨胀土生态治理研究进展. 岩土工程学报. 2024(S2): 60-66+176 . 本站查看
    12. 赵二平,唐加林,李志坤,张聪. 不同初始含水率下广西膨胀土膨胀变形规律及劣化机理研究. 人民珠江. 2024(11): 115-123 .
    13. 陈敏. 机场滑坡与桩锚结构支护方案研究. 江西建材. 2024(12): 227-228+235 .
    14. 刘振北. 膨胀土滑坡基本特征分析及防治措施研究. 江西建材. 2023(02): 114-115+118 .
    15. 孙超. 粉煤灰掺量对膨胀土抗剪强度的改性影响. 水利建设与管理. 2023(05): 25-30 .
    16. 吴新华,闫林芳. 滑坡防治措施设计及运营效果评价. 江西建材. 2023(04): 130-132 .
    17. 欧阳荣,吴永东. 超高边坡防治方案设计及运营效果分析. 江西建材. 2023(07): 96-97+100 .
    18. 邱兵,白慧林. 锚杆挡墙加固高陡土质边坡设计探讨——以岗白路K8+290~K8+400段路基边坡为例. 科技和产业. 2023(21): 221-226 .
    19. 周钊. 弱膨胀土路基固坡防护施工研究. 交通世界. 2023(31): 52-54 .
    20. 曹正波,李建朋. 上硬下软型膨胀土路堑滑塌成因与处治. 公路. 2023(12): 39-43 .
    21. 李晶,梁力川,邵雪停,季军远,王玉. 考虑降雨和地震作用下的铁路边坡稳定性分析. 山东农业大学学报(自然科学版). 2023(06): 887-896 .
    22. 凌时光,张锐,兰天. 膨胀土强度特性的研究进展与探究. 长沙理工大学学报(自然科学版). 2023(06): 1-16 .
    23. 周锐,王保田,王东英,王斯杰,张福海. 不同干湿条件下中等膨胀土裂隙发展及作用机理分析. 农业工程学报. 2023(21): 98-107 .
    24. 张梦涵,魏进,卞海丁. 基于机器学习的边坡稳定性分析方法——以国内618个边坡为例. 地球科学与环境学报. 2022(06): 1083-1095 .

    Other cited types(3)

Catalog

    Article views PDF downloads Cited by(27)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return