Citation: | XIE Xinyu, GONG Tao, XU Chuntai, WANG Zhongjin, LOU Yang, LIU Kaifu, ZHANG Rihong. Dynamic settlement characteristics of piles based on stick-slip mechanism between piles and soils[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(2): 264-272. DOI: 10.11779/CJGE20221316 |
[1] |
胡育佳. 桩基非线性静动力学特性研究[D]. 上海: 上海大学, 2008.
HU Yujia. The Research on Nonlinear Static and Dynamic Characteristics of Piles[D]. Shanghai: Shanghai University, 2008. (in Chinese)
|
[2] |
李林, 李镜培, 孙德安, 等. 考虑时效性的静压桩荷载-沉降关系预测方法[J]. 岩土工程学报, 2017, 39(12): 2327-2334. doi: 10.11779/CJGE201712023
LI Lin, LI Jingpei, SUN De'an, et al. Prediction method for time-dependent load-settlement relationship of a jacked pile[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(12): 2327-2334. (in Chinese) doi: 10.11779/CJGE201712023
|
[3] |
KRAFT L M Jr, RAY R P, KAGAWA T. Theoretical t - z curves[J]. Journal of the Geotechnical Engineering Division, 1981, 107(11): 1543-1561. doi: 10.1061/AJGEB6.0001207
|
[4] |
RANDOLPH M F, WROTH C P. Analysis of deformation of vertically loaded piles[J]. Journal of the Geotechnical Engineering Division, 1978, 104(12): 1465-1488. doi: 10.1061/AJGEB6.0000729
|
[5] |
贺武斌. 静荷载下单桩沉降的时间效应研究[D]. 杭州: 浙江大学, 2003.
HE Wubin. Studies on the Time Effect of the Settlement of Single Pile under Static Load[D]. Hangzhou: Zhejiang University, 2003. (in Chinese)
|
[6] |
王东栋, 孙钧. 基于广义剪切位移法的桥梁桩基长期沉降分析[J]. 岩土工程学报, 2011, 33(增刊2): 47-53. http://cge.nhri.cn/cn/article/id/14319
WANG Dongdong, SUN Jun. Long-term settlement of pile foundation of bridges based on generalized shear displacement method[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(S2): 47-53. (in Chinese) http://cge.nhri.cn/cn/article/id/14319
|
[7] |
李振亚, 王奎华, 吕述晖, 等. 考虑桩侧土体非线性的静荷载作用下的单桩沉降时间效应研究[J]. 岩石力学与工程学报, 2015, 34(5): 1022-1030.
LI Zhenya, WANG Kuihua, LÜ Shuhui, et al. Time effect of settlement of single pile under static loading considering nonlinear characteristics of soil around pile[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(5): 1022-1030. (in Chinese)
|
[8] |
SMITH I M, TO P. Numerical studies of vibratory pile driving[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1988, 12(5): 513-531. doi: 10.1002/nag.1610120506
|
[9] |
HOLEYMAN A. An analytical model-based computer program to evaluate the penetration speed of vibratory driven sheet piles[J]. Géotechnique, 1993, 43(18): 65-78.
|
[10] |
NOGAMI T, KONAGAI K. Time domain axial response of dynamically loaded single piles[J]. Journal of Engineering Mechanics, 1986, 112(11): 1241-1252. doi: 10.1061/(ASCE)0733-9399(1986)112:11(1241)
|
[11] |
吴鹏, 任伟新. 竖向激励场下考虑桩土滑移的单桩动力性态[J]. 土木工程学报, 2009, 42(6): 92-96.
WU Peng, REN Weixin. Response of single piles to vertical excitation with pile-soil slip[J]. China Civil Engineering Journal, 2009, 42(6): 92-96. (in Chinese)
|
[12] |
张昭. 砂土中桩基础沉降机理宏细观研究[D]. 上海: 同济大学, 2007.
ZHANG Zhao. Macro-Scale and Meso-Scale Study of Settlement Mechanism of Pile Foundations in Sand[D]. Shanghai: Tongji University, 2007. (in Chinese)
|
[13] |
王伟, 卢廷浩, 宰金珉. 桩承载力的时间效应机理分析[C]//中国土木工程学会第九届土力学及岩土工程学术会议论文集(上册). 北京, 2003: 6755-658.
WANG Wei, LU Tinghao, ZAI Jinmin. Time effect mechanism of pile bearing capcity[C]// Proceedings of 9th National Conference on Soil Mechanics and Geotechnical Engineering, China Civil Engineering Society, Beijing, 2003: 6755-658. (in Chinese)
|
[14] |
FELLENIUS B H. Determining the true distributions of load in instrumented piles[C]//Deep Foundations 2002. Reston V A: American Society of Civil Engineers, 2002.
|
[15] |
O'NEIL M, REESE L. Drilled Shafts: Construction Procedures and Design Methods[R]. Washington: Federal Highway Administration, 1999.
|
[16] |
ISMAEL N F. Axial load tests on bored piles and pile groups in cemented sands[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2001, 127(9): 766-773. doi: 10.1061/(ASCE)1090-0241(2001)127:9(766)
|
[1] | DU Zi-bo, QIAN Jian-gu, GUO Yuan-cheng, HUANG Mao-song. Constitutive modeling of plastic effects of cyclic principal stress rotation of natural soft clay[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(8): 1493-1501. DOI: 10.11779/CJGE202208014 |
[2] | CHEN Cun-li, JIA Ya-jun, WANG Jun-fu, ZHAO Jie, ZHANG Yang. Characteristics of principal stress of compacted loess in plane strain direction[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S1): 16-21. DOI: 10.11779/CJGE2018S1003 |
[3] | DONG Tong, ZHENG Ying-ren, KONG Liang, ZHE Mei. Strength criteria and slipping planes of anisotropic sand considering direction of major principal stress[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(4): 736-742. DOI: 10.11779/CJGE201804018 |
[4] | LI Yuan-xin, ZHU Zhe-ming, FAN Jun-li. Effect of principal stress orientation on stability of surrounding rock of tunnels[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(10): 1908-1914. DOI: 10.11779/CJGE201410019 |
[5] | YANG Yun-ming. A soil model considering principal stress rotation[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 479-486. |
[6] | GUO Ying, ZHANG Jun-feng, LUAN Mao-tian, LIU Gong-xun. Effect of orientation of initial principal stress on undrained shear behavior of saturated silt[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(1): 166-171. |
[7] | XIANG Biao, ZHANG Zongliang, CHI Shichun. Three-modulus incremental nonlinear model of rockfill under paths of constant stress ratio[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(9): 1322-1326. |
[8] | CAO Pei, CAI Zhengyin. Numerical simulation of stress path tests on sand[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(1): 133-137. |
[9] | SHEN Yang, ZHOU Jian, ZHANG Jinliang, GONG Xiaonan. Research on strength and pore pressure of intact clay considering variation of principal stress direction[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(6): 843-847. |
[10] | LI Guangxin, HUANG Yongnan, ZHANG Qiguang. The principal stress of soil in the direction of plane strain[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(3): 358-361. |